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Abstract. Combinatorial methods bring about enormous data not only in size but also
in dimension. To handle multi-dimensional data easily, a concept of virtual container for
combinatorially acquired data is demonstrated which is called “virtual sample library” (VSL).
VSL stores the data hierarchically in the order of (1) coordinates in the sample library, (2)
names of the measurements performed, and (3) data obtained from each measurement. Thus,
the stored data are accessed intuitively just by tracing this tree-like structure and are provided
for visualization and sharing with others. This framework is constructed by the aid of an
object-oriented scripting language which is good at abstracting complicated data structure. In
this paper, after summarizing the problems of handling data acquired from combinatorially
integrated samples and availabilities of software tools to solve them, the concept of VSL
is proposed and its structure and functions are demonstrated on the basis of one specific
experimental data. Its extensibility as a platform for numerical simulation is also discussed.
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1. Introduction

We can enjoy the benefit of combinatorial technology only after we can afford to analyze
the large amount of data obtained. Although large scale data processing is an everyday
technique in other fields such as genomics and geophysical fluid dynamics, there still
remain some problems unique to our fields. It appears when we perform several kinds of
measurements per one combinatorially integrated sample and examine the correlation among
these measurements.

In general, the data of each measurement are stored independently in various formats,
thus it is very laborious work to pick up the correlated data measured at a specific position in
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Figure 1. lllustration showing an example of the situation when multi-dimensional data
management is needed. Four kinds of measurements over a combinatorially integrated
sample[1] bring about an enormous number of data in various formats, which forms 7-
dimensional data and are hard to be analyzed and be shared with colleagues.

the sample library (see Fig. 1). Moreover, a number of files in various formats are difficult to
be shared with colleagues. In order to solve these problems, all the data should be stored at
one place in a common format, i.e. they should be treated as a set of multi-dimensional data.
Thus, we need a special software to structuralize and standardize them.

It would be easiest if we can find such software as ready-made or custom-made
product, but we often feel not to be willing to pay for them because they do not satisfy
our requirements such as compatibility with existing data and/or environments, and cost
performance. Therefore, sometimes it is simpler to make software by ourselves, by the aid of
modern user-friendly programming languages.

In this context, the author has proposed a concept of 'virtual sample library’ (VSL)[2, 3],

a container of multi-dimensional data, used for acquisition, visualization and sharing. The
most important feature of VSL is that it is written by an object-oriented scripting language,
which enables us to treat our complicated data in a simple way. In the former articles|2, 3],
however, the author could not give sufficient discussion about why this language was chosen
and how the functions of VSL are realized by the language, due to the limited space.

Thus, in this paper, VSLs are fully described including the problems to be solved
(Section 2), the reason why object-oriented scripting language is used (Section 3) and their
functions (Section 4). Lastly, the extensibility of VSLs is discussed in comparison to existing
virtual libraries (Section 5). The aim of this paper is to demonstrate the merits of the present
data managing method without any preliminary knowledge of object-oriented programming.
For the sake of helping the understanding of its mechanism, its explanation is made on the
basis of a specific experimental data[1]. The readers, who want to know the concept of VSL
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briefly and quickly, are recommended to read the former and shorter articles[2, 3] first.

2. The root of our problem

The problems we are facing with are summarized in the following three situations.

2.1. Acquisition

In a combinatorially integrated sample, each pixel is identified as the condition it was
fabricated, such as composition, temperature, etc. In addition to these, we perform several
measurements on it. Since these operations are done separately for the most part, acquired
data are recorded independently in various formats, as illustrated in the upper left part of
Fig. 1. This situation becomes more complex when some measurements are performed pixel
by pixel sequentially and the results are saved separately. Thus, we have to organize many
files more than the number of pixels in the sample library.

2.2. Provision

It is quite easy to draw a graph from the data stored in a single file. All you have to do is

to specify which data in the file are plotted toward the software you are using. In contrast,
when the data for plotting are distributed over a number of files, we have to provide them after
re-compiling the files. Such an editing job requires our patience to remember every format of
the files needed, as illustrated in the upper right part of Fig. 1.

2.3. Sharing

Dispersed data also causes another difficulty in sharing them with collaborators. People
who have not be involved in preparation and/or measurements of the sample find it hard to
recognize which files are to be accessed for their needs.

3. Selection of software tools

The solution of these problems is so simple. All the data are to be structuralized and
standardized so as to be treated as a single object, as illustrated in Fig. 2. It is, however,
easier said than done and there is more than one way to do it. The first thing to do is to select
software tools to realize it. In this section, several alternatives are surveyed briefly with their
pros and cons, and finally the author’s choice is presented. Such a discussion is useful for
those who wish to find better way to meet with their own requirements.

3.1. Creating a database or other solution

What we have to note here is that the problems listed above are not resolved simply by creating
a database. As far as the data are registered individually into the database, we have to re-



Object-oriented virtual sample library 4

% Annealing Temp. >,
[ %
€ % vy
o : % ® Acquisition
7 |Appearance >,
8 oo". ‘,' <>
= .'0, ",
o3 [Fluores. Spectrum >, =
= %, .,
% R A2 'o."’
c S
o ., ..
O P e Provision
; B T
| I N T 4
/ _
e Structuralization| 7 Visualization
& Standardization il
/
Multi-dimensional data

e Sharing

Figure 2. lllustration showing a solution of data flooding. Combinatorially acquired data,
which are recorded independently in various formats, are structuralized and standardized so as
to be treated as a single object, which is easy to handle and share.

organize them as a multi-dimensional data. Thus, we still need a software for data collection
from the database to make a single object of multi-dimensional data.

3.2. Do-it-yourself or outsourcing

There is a bit of truth to say that we as researchers in materials science should outsource such a
development of data managing system and devote ourselves to our specialties. It's a trade-off
between what we must/can do for outsourcing and do-it-ourselves. For outsourcing, we have
to get enough funds, write specifications for system vendors, and wait for the completion
of the development. For do-it-ourselves, the size of to-do list depends on our skill for
programming, available software tools, and the application area we want to cover. The first
two items are complementary; programming skill is less needed when a better human-centered
user interface is provided with the software tools. The last item includes data acquisition from
experimental apparatus and/or database system, data provision for visualization tools, and data
sharing among others.

3.3. Programming languages

History of programming language is the one getting rid of the tasks of programmers to
adjust to the convenience of computers and focusing their efforts on more substantial works.
Just as assembly languages were expelled from the main stream in the past by high-level
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languages such as FORTRAN, Pascal and C, some new languages have been on the rise
recently including scripting languages and object-oriented languagesl[4].

Scripting language is often called as glue language. According to FOLDOC (Free
On-Line Dictionary Of Computinghttp://foldoc.doc.ic.ac.uk/foldok/its definition is,Any
language, ..., used tarite glueto integrate tools and other programs to solve some problem
This metaphoric name of “glue” comes from its easy of use like a stationery and its ability to
process data into any required format so as to collaborate with existing software tools. In other
words, the programs written by this language, called script, are executed without compiling,
unlike the conventional high-level languages. Moreover, the language is full of features to
make scripts easy to write and read. Perl, one of the most popular scripting languages, is
commonly used in bioinformatics[5].

Object-oriented languages provide us a different way to reduce the load for
programming. The language has an ability to describe a group of data as an “object” with a
set of procedures of how to treat these data. This feature is suitable for us to construct a single
object containing multi-dimensional data. Once multi-dimensional data object is generated,
we don’t have to worry about remembering its inner data structure in detail and can process
it just by calling the procedures stored in it. Entry-level users should be, however, ready to
spend some time to learn object-oriented programming.

There are some languages having both the two features, called object-oriented scripting
language. They include Python, Ruby and Perl, which are open source software (see the later
text) and used in other scientific field such as geophysics[6] and bioinformatics[7].

3.4. Extensibility and open source software

Whatever ideal options we discuss, final choice eventually depends on individual
circumstances, such as necessity for special functions which are available only by specific
software/language. For example, we may need data acquisition via GP-IB / RS232C / parallel
| TCP-IP / USB port, data retrieval from databases via Structured Query Language (SQL),
or data provision for specific visualization tools. Such features are not necessarily available
in every software as it is. We should notice, however, whether they can be implemented by
existing external libraries or not. Some software provide such an extensibility by linking a
small user-written program to bridge between the software and the libraries.

The ultimate extensibility is realized when the source code of software is open and
allowed for the users to improve. “Open source” software is one of the software having
this nature. The definition of “open source” is strictly given here[8] in order to promote
the development of open source software by utilizing this nature. We are free to improve
it, write add-in packages and release them to the public. Thus, we may also find a specific
function already implemented by others. Many software packages like GNU/Linux, Apache,
Perl etc. have grown up in this framework and become popular because of their high quality
and reliability. Other pros and cons in laboratory use are summarized in [9].
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Table 1. List of the 7-dimensional data used in this study (see text). Some of these are plotted

in Fig. 3 and 4.

# Data Fig.3 Fig. 4
1 Positiongxz/mm O O

2 lstannealing templ; /°C O O

3 2nd annealing templ;/°C O

4  Appearance of glass segment O O

(White, Opaque, or Transparent )
5 Fluorescence lifetime;/msec O O

Fluorescence spectra (CW component)
6 Intensity (a.u.) O
7 WavelengthpA/nm O

3.5. The author’s choice

As the author’s solution, virtual containers of multi-dimensional data are constructed, named
virtual sample libraries (VSLs) written by open source object-oriented scripting language,
Ruby[10, 11]. Ruby has been developed by a Japanese software engineer since 1993 and
was designed to make the users “concentrate on the creative side of programming, with less
stress”[11]. In order to visualize the data in VSLs, an external graphic library is used, called
Ruby/PGPLOT[12]. It was originally developed for use with astronomical data reduction
programs in Caltech since 1983 written in FORTRAN[13]. Thanks to the variety of graphic
primitives available via function call, we can design graphs with a high degree of flexibility.

4. Virtual sample libraries

In this section, the structure and functions of VSLs are explained with an example of multi-
dimensional data acquired from a series of fluorescence lifetime measurements over three
Er-doped glass sample libraries[1], whose segments are arrayed in a row and were annealed
in a temperature gradient furnace so as to be heat-treated in three different conditions; (0) no
annealing, (1) being annealed for 5min, and (2) another successive annealing at a different
position in the furnace for 5min. The sum of the dimension becomes seven, which are listed
in Table 1, and the total size of data file is about 8MB in text format. The data obtained from
three sample libraries are compiled and plotted in Fig. 3 and 4 using VSLs[2, 3].

Hereafter, some simple Ruby codes are given with plain explanations for those who
have no background knowledge of Ruby and object-oriented programming, rather than to be
terminologically strict. Skilled readers are advised not to rely on the explanations too literally
and to consult the codes directly.
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Figure 3. Fluorescence spectra of Er (three columns from left, #6 and 7 in the Table 1),
lifetime of 1.533nm fluorescence (right, #5) and appearance of glass segment (between the
formers, plotted in red, light-gray and dark-gray, #4) plotted along the sample library or as
a function of the 1st annealing temperatufg, Excitation wavelength is 977nm. (0) with

no annealing treatment for reference. (1) with 1st annealing for 5min only. (2) with two
successive heat treatments, each for 5min. For the appearance plot, red is for completely
crystallized segment, dark gray for transparent, and light gray for opaque. Solid and dashed
lines in the lower row and in the right are for the positions named A and B, respectively. The
horizontal black solid lines in the intensity plot correspond to the data withdrawn due to their
low signal/noise ratio. A lifetime increase is found at around the glass segment A in the sample
(2). At the same time, the fluorescence peak at/n5% broadened.

4.1. Structure

VSL models after actual combinatorially integrated sample library. Namely, its logical array
structure is similar to the cell structure of the real library. In each cell in the VSL, references
to experimental data (or another references to data) are stored. In other words, VSL stores
the data hierarchically in the order of (1) coordinates in the sample library, (2) names of the
measurements performed, and (3) data obtained from each measurement. Thus, VSL has a
tree structure and each experimental data is intuitively accessed by tracing references from the
root of the tree. Namely, VSL stores not only experimental data but also the relations among
the data and the positions in the actual sample library.

This hierarchy structure is visualized as “pull-down menu” style in Fig. 5. In the bottom
of the window, the root menu is located showing the coordinates in the library, from 40 to 60.
After the item of “41” is selected, a sub-menu appears showing what kinds of data are stored.
Next, the item of “Fluorescence Spectrum” is chosen and another sub-menu is opened to
show it consists of two items. Finally, by choosing “Wavelength” item, a series of wavelength
values are shown at “Value” box just above the main menu. In this way, such a hierarchy
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Figure 4. Annealing conditional and/or positional dependence of the lifetime and appearance
of the sample libraries. Aand B, indicate specific glass segments. These notations are also
used in Fig. 3. The maximum lifetime was obtained by annealing atG%Mhd then 470C

(A2).
X Virtual Sample Library 77 =l |
vl = Tk55v1ib.new( ”191316s.rpg”, "gbh0607.rb”, ”191443¢c.rpg” )
Code:|vl[41][”Fluorescence spectrum” ]["Wavelength (rm)”]
Class:|[NArray {c}y 2003 TODOROKI Shin-ichi
Value:|[ 893.94, B896.8, 899.66, 902,52, 905,38, 908.24, 911.1, 913.96, 916.83, ... ]
f‘ 40 ﬂ 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 6O ‘ e Methods
Appearance .
Fluorescence spectrim ! Intensity (a.u.)

Fluorescence/Time “ Wavelengzth (mm)
Heat Treatment ~
Lifetime/Wavelength -~

Figure 5. An illustration showing an example of VSL's hierarchy structure by “pull-down
menu” style (see text).

structure can store the whole multi-dimensional data systematically and gives us an easy way
to access the individual data.

4.2. Provision

Figures 3 and 4 are generated by user-written Ruby scripts, in which three VSL objects are
constructed and some functions of Ruby/PGPLOT are called with some extracted data from
the VSL objects. The action of tracing data tree shown in Fig. 5 is equivalent to the Ruby code
displayed in the “Code” box, where the varialle corresponds to one of the VSL objects

and the following square brackets mean an operator returning the element referred as the key
inside the brackets. Thugl [41] corresponds to the list of measurements performed at the
pixel of 41 andvl [41][ ’Fluorescence spectrum’ ] the axes list of fluorescence
spectrum at 41.
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Followings are the examples of Ruby code used for plotting the extracted data used in
Fig. 3. The fluorescence spectra plotted at the bottom of Fig. 3 are generated by the following
code,

pagline vl [X][ ’'Fluorescence spectrum’ [ 'Wavelength (nm) ],
vl [X][ ’Fluorescence spectrum’ I[ ’Intensity (a.u.)’ ]

where pgline is a function for drawing a line specified with the accompanying two
arguments representing x- and y-axes.

Three color images at the top-left of Fig. 3 representing the positional dependence of
fluorescence spectra are generated by the code,

a =
vl .each do |v|
a << v[ 'Fluorescence spectrum’ I[ ’Intensity (a.u.) ]
end
pgimag a, RANGE_OF_Z-AXIS

where a two-dimensional arrag, is formed during the first four lines amabimag is a
function for drawing a color image of the array. The first line defines an empty array named
asa. The lines from the second to the fourth form a loop executed for each of the elements in
vl . The variabler in the third line corresponds to one of the elemewnitgx] . In the loop,
an array representing fluorescence spectrum is extracted from VSL and addedhire this
operation is described as<”, to form the two-dimensional data array.

Frequently we need another cross-sectional view along an axis other than wavelength,
such as the positional dependence of fluorescence lifetime plotted at the top-right of Fig. 3. In
this case, a simple procedure picking up the related data are required as listed below.

x, y =101

vl .each_with_index do |v,i|
X << v[ ’'Lifetime/Wavelength’ I[ ’Lifetime (ms)’ 1z]
y << i

end

pgpt X, y, SYMBOL

wherepgpt is a function for drawing a series of points specified with the accompanying two
arguments representing x- and y-axes. The first line defines empty arrays namech@s

y. In the loop from the second line to the fifth, theth lifetime value, that is, the value at
the wavelength of/[ 'Lifetime/Wavelength’ I 'Wavelength (nm)’ 1Ilz] nm,

is added tox and the pixel number af is added toy.

Sometimes we have to plot data in the way not provided by the standard functions
of visualization tool, such as Fig. 4 and the positional dependence of appearance plotted
between the color images and the lifetime curves in Fig. 3. We can clear it up by the aid
of programming language. The sample code for the latter case (Fig. 3) is the following,
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vl .each_with_index do |v,i|
case V[ 'Appearance’ |

when ’transparent’ ; pgsci DARKGRAY
when ’‘opaque’ ; pgsci LIGHTGRAY
when ’'white’ pgsci RED
end
pgptl 0.4, i, SYMBOL

end

wherepgsci is a command to set the color for plotting gogptl a function for drawing a
symbol specified with the accompanying two arguments representing x- and y-values. In the
loop, the color is set according to the valuevpf Appearance’ ] and a symbol is plotted
at (0.4,i ). For plotting the data in Fig. 4, the position, the size and the color of each data
point is changed according to the properties of #1—#5 in Table 1.

In summary, every data in VSL objects is accessed via a series of brackets operators so
as to trace its tree-like structure shown in Fig. 5. This excellent traceability helps us to write
concise scripts customized with advanced features.

4.3. Acquisition

The data extraction described above becomes possible only after the VSL object is generated.
The code for its generation is shown on the top line of the window shown in Fig. 5, in which
three data files are specifie@k55vlib  is the name otlassandvl is aninstanceof this

class. The relation between the two is illustrated in Fig. 6 using a metaphor of a mold and its
casting. In the definition oTk55vlib  class, it is described there how to read the data files
specified with the arguments okw operator (or “method”, a term used in object-oriented
programing) and construct a tree-like structure on the basis of fabrication conditions recorded
in these files, i.e. #1—#4 in Table 1. Thew method returns a VSL object, in other words, an
instance ofTk55vlib  class, corresponding to the data stored in the specified files.

After a measurement on the sample library, we can register the result into the VSL
object via user-defined methods. In the present ceeggster fluorescence and
register_lifetime methods are defined together with the definitionT&b5vlib
class. Itis described there how to find and read data files and add branches corresponding to
#5—#7 in Table 1 to the main tree-like structure. These methods are executed by the following
code,

vl .register_fluorescence
vl .register_lifetime

after which the tree structure shown in Fig. 5 is fully constructed. We can add new methods
for data acquisition from other data sources, such as database and measurement equipment,
as far as the programming language supports to communicate with these sources.

One thing to be noticed here is th8k55vlib  class is only valid for the libraries
with one-dimensional pixel array. Thus, whenever a new sample library with different pixel
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¢ |[nstance

Figure 6. An illustration showing the relation betweetassandinstanceusing a metaphor of
a mold and its casting. (see text).

geometry is prepared, we have to design a new VSL class for it. It takes, however, not
much time for programming since object-oriented languages have a special feature for reusing
existing codes with least modifications. Moreover, we can design a new class forming a new
tree-like structure consisting of existing VSL objects, which corresponds to an increment of
dimensional number. This means that it is possible to treat multi-dimensional data, acquired
from a group of “real” sample libraries, as one “virtual” sample library.

4.4. Accessing VSLs over network

Construction of VSL objects takes longer time with increasing the size of multi-dimensional
data. Thus, it is not efficient to generate VSLs every time VSL-based script is executed. This
problem is solved by using a Ruby library which enables to provide objects over network,
called “drb” (distributed Ruby[11]). Under this scheme, one computer acts as a VSL server
responding to the requests from client computers, which do not have to spend any CPU time
for VSL generation and store any data files. This framework is also used to share VSL objects
with colleagues on a secure network.

4.5. Alternative implementation

Since the basic part of VSLs is realized by object-oriented programming technology, VSLs
are implementable by other object-oriented scripting languages, such as Python and Perl,
conventional object-oriented languages, such as Java, C++, or possibly object-oriented
database systems. The choice depends on user’s need for the interfaces for acquisition,
provision and sharing, i.e. functions for communicating with measurement apparatus,
databases, visualization tools and networks.
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5. Extensibility beyond data containers

VSLs have a potential to go beyond managing existing data. Since VSLs are objects (please
recall the description at the third paragraph of section 3.3), we can add to them some
procedures to generate new data or perform simulations by referring the data stored inside. In
other words, object-oriented VSLs have functions to perform virtual experiments just like in-
silico combinatorial library and virtual combinatorial library[14] do. All these virtual libraries
have common characteristic features of storing data for a group of samples and also storing
procedures to treat them. The procedures in the present VLSs are focused on acquiring,
visualizing, and sharing the data, and the others on simulations. In contrast to the latter, the
present VSLs are distinguishable by calling them “object-oriented virtual sample libraries”[3].

6. Conclusions

A concept of virtual sample library (VSL) is presented. VSLs are used for multi-
dimensional data management for combinatorial experiments, in which several measurements
are performed per one sample library. VSLs enable us to treat the whole data as one object
and to access any of the data inside by tracing their hierarchy structure. VSLs are written in
open source object-oriented scripting language Ruby, because of its high ability in abstraction
and extensibility. Their structure and functions are demonstrated using a specific experimental
data.
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