The use of NIMS library items is restricted to research and education purposes. Reproduction is not permitted.

NRIM SR-95-01

A Simple Geometrical Approach to the Prediction of
Plastic Properties of Metal Crystals

by

5 Ei-ichi FURUBAYASHI

NRIM Special Report
(Research Report)
No. 95-01

1995

National Research Institute for Metals

1-2-1, Sengen, Tsukuba-shi, Ibaraki, Japan



NRIM SR-95-01

A Simple Geometrical Approach to the Prediction of
Plastic Properties of Metal Crystals

by

Ei-ichi FURUBAYASHI

NRIM Special Report
(Research Report)
No. 95-01

1995

National Research Institute for Metals

1-2-1, Sengen, Tsukuba-shi, Ibaraki, Japan



A Simple Geometrical Approach to the Prediction of Plastic Properties of

Metal Crystals
by
Ei-ichi FURUBAYASHI

NRIM Special Report
(Research Report)

No. 95-01

Contents
ADSITACE. .ot e e er et e
1o INETOAUCHION tottiii et ettt ettt et e e b e eate e e e e bt e e et et e eaa s
2. The First Principle: Use of the Geometrical Properties of Reciprocal Lattices.....................
3. The Second Principle: Asymmetry of Plane Stacking and Polarity of Shear Direction..........
4. Applications of the Principles to Predict Uncertain Plastic Properties...........cooovviiiviiinieiinnee,
4.1 Slip Systems in BCC MetalS ......iviiiirrieiiiriieeiiiiine ettt eere e e e e
4.1.1 Experimental eVIJEIICE .......civvuiuieiiriiiiieiiriii et e e et s et e e tabbie et enb e e reninn e
4.1.2 Geometrical PrediCtiON . .uu.u.iiriuineierii et et et ettrer et e eaber e eer e rabanees
4.2 Deformation TeXIUTES. .......iiiiiiiiieeii ettt e et e e e e eeeebi e eees
4.3 Polarity in Slip in FCC and BCC MetalS.......ooivviiiiiiiiiiiieiiieieineei e
4.4 Mechanical Twins and Stacking Faults in FCC and BCC Metals......c.cc.ccovvvienieiinnnennnn.
4.5 Polarity of Shear in Martensitic Transformation and Variant Selection..............c.ccoeeeen.
4.5.1 The orjentation relationship as a formulation of transformation mechanism ................
4.5.2 Variant selection models in view of polarity .....c.cccoovvviiriveiiiiiiiiiiiii e,
5. Summary and CONCIUSION .....oiiiiiiiiiiiiiiii ittt ee e e e erer et e s
ACKNOWIEAEEIMENLS ....ooiiiiiiiiiiiiiii i e e

References

N=BN B e Y Y Y Y S S R S

o
W N No - oo



NRIM SR-95-01

A Simple Geometrical Approach to the Prediction of Plastic Properties of
Metal Crystals

by

Ei-ichi FURUBAYASHI

Abstract

Methodology has been described, in view of crystal lattice geometry, for deductive prediction
of plastic properties of fcc and bcc metal crystals.

The geometrical properties of reciprocal lattice have been used to predict unknown or
uncertain properties in one lattice from the known properties in another lattice (this procedure is
called RLC), since bce and fcc are in the relation of reciprocal lattice with each other. Probable
slip planes and stacking faults in bee lattice have been predicted from those of fcc metals and
compared with experimentally available data in bcc metals. Deformation textures are able to be
predicted by the RLC, too.

Polarity of shear deformation (SDP) on asymmetric crystal planes (as evidenced by well-
known polarity in twinning shear) has been treated as the most essential nature in the operation of
{112} slip in bec. The presence of polarity in the critical shear stress for {112} slip in Fe-3%Si
alloys was actually found on this basis. The importance of the SDP concept has also been proved
in the “deformation” associated with y to o martensitic transformation in ferrous metals. Variant
selection phenomena in the martensitic transformation have been interpreted or predicted in this
way. Possibility and limitation of such approach have also been described.

Keywords: crystallography, body centered cubic metals, face centered cubic metals, iron
alloys, reciprocal lattice, slip system, twinning system, stacking faults, dislocations,
martensitic transformation, variant selection, orientation relation, deformation texture
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1. Introduction

The NRIM (National Research Institute for Metals)
Special Report Series has been planned for each volume
to publish a collective report prepared by a nominated
author. In this consequence, major content will usually be
a review on items which have been published in the past.
In this volume, new mostly unpublished contents will be
described. The article is concerned with the theoretical
prediction of uncertain or disputable crystallography of
slip systems, martensitic transformation er al, on the
basis of the asymmetry of the crystal structure or polarity
for deformation in bcc and fcc lattices. The comparison
with published experimental data will also be presented.

Crystal geometries for slip, twinning and related
dislocation behavior are the first subject of this report.
Deformation textures will also be interpreted in relation
to the slip behavior. These articles were treated compre-
hensively in the classical text “Plasticity of Crystals” by
E. Schmid and W. Boas). The item looks like out of
interest for recent researchers, but it will still be essen-
tially important in understanding the mechanical proper-
ties of metal crystals. The discussion will be made here to
cite recent achievement and to extend further understand-
ing. Martensitic transformation and particularly variant
selection phenomena will be treated in a similar way.
Many metallurgists, however, have not believed the possi-
bility of either complete understanding or the prediction
of plastic properties for actual complicated structures of
materials. For this reason, many geometrically evident
properties have remained unestablished.

Two simple principles will be presented first in this
report, in relation to the geometry of crystal lattices.
Published properties which can or cannot be accounted
for by these principles will be discussed next. Unknown
or uncertain but geometrically expected properties will
also be described in view of these principles.

Fundamental crystallographic knowledge which is
used in this report has appeared in the texts of physical
metallurgy, like those by E. Schmid and W. Boas®), W.T.
Read®, or C.S. Barrett and T.B. Massalski®. So, many
items are not always sited for each case.

The author is afraid that the contents described will
not always be correct, or will make misleading in some
respects, and therefore he is expecting to receive informa-
tion, critical discussions, or helpful suggestions from the
readers.

Table 1 Geometrical properties of reciprocal lattice

Standard lattice Reciprocal lattice

PLANE = |DIRECTION
DIRECTION = |PLANE

Plane normal (Pole) => |{Crystal axis

Crystal axis => |Plane normal (Pole)

2. The First Principle: Use of the Geometrical Proper-
ties of Reciprocal Lattices

Bec and fec lattice structures are mutually in the
relation of reciprocal lattice with each other. With this in
mind, unknown crystallographic properties of one lattice
can be deduced from known properties of another
(reciprocal) lattice. Considerable experimental evidence
on slip or twinning systems, dislocation Burgers vectors,
or other crystallographic properties on plasticity in fcc
and bce metals has been accumulated. For some proper-
ties, however, we have to recognize significant lack of
reliable experimental data. For example, slip systems in
fcc metals has been almost completely evident, but in bec
metals crystallography of slip planes has still been con-
troversial, as will be described in more detail in the
following section. Even in such cases, slip systems of bcc
metals can be deduced from those of fcc metals, based on
the fact that the bcc is the reciprocal lattice of fcc.

The useful properties of reciprocal lattice are as
follows; a certain direction [hkl] and plane (uvw) in a
(standard) lattice are transformed into the same index
plane (hkl) and direction [uvw] respectively in the
reciprocal lattice, as summarized in Table 1. As a result, a
shearing system, i.e. a combination of direction [hkl] and
plane (uvw), in the standard lattice is transformed to a
new shearing system [uvw](hkl) in the reciprocal lattice.
This kind of exchange relation between the plane and the
direction will be called as “RLC (Reciprocal Lattice
Correspondence)” hereafter.

3. The Second Principle: Asymmetry of Plane Stack-
ing and Polarity of Shear Direction

Most of lattice planes in crystals have “asymmetry”
with respect to their stacking direction, or have no mirror
reflection symmetry. For example, {111} planes in fcc
lattice have three cyclic layers of stacking; ABCABC in
one direction, while CBACBA stacking in the reverse
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Fig. 1 Stacking of atomic layers of close-packed planes viewed from
perpendicular directions. Large circles show the atoms on a
plane on the drawing, and small circles are those on the next
plane. (a) Asymmetric stacking of (111) plane stacking in fec
lattice structure viewed from [110]. (b) Symmetric (110) plane

Fig. 2 Schematic view of polarity of twinning shear [111](112) in bee
lattice viewed from [110] direction. Large circles show the
atoms on a plane on the drawing, and small circles are those
on the next plane. (a) Atom arrays in (untwinned) fec lattice,

stacking in bece lattice structure viewed from [112]. showing six layers stacking of (112) planes ABCDEF which are
perpendicular to the sheet and are horizontal (i.e. parallel to
X-Y). (b) The same arrays in twinned lattice; the twin bound-

. . L . ary lies along XY, Double circles indicate the atoms in the
direction as shown in Fig. 1(a), thus having asymmetry. twinned crystal.

On the other hand, {011} type planes in bcc lattice have

ABAB stacking which has mirror reflection symmetry, as B

shown in Fig. 1(b). {001} type planes in fcc or bee lattice sl_lown in Fig. 1(a). But [110](111) has not polarity where
will be another example of symmetry, but most planes are  [110] is perpendicular to the figure. Every direction hav-

of asymmetry. ing such polarity (e.g. [112]) has to be normal to an
In general, shear deformation along such asymmetric asymmetrically stacked plane (i.e. (11?) in this example),

planes have “polarity.” For example, shearing along and this will be another expression for the direction to

[112] direction on (111) plane (hereafter described as have polarity.
[112](111)) in fec lattice is not crystallographically identi- Many intrinsic mechanical properties of metals and
cal with the opposite [T12](111), thus having polarity as alloys originate from the polarity of shear described here.

Table 2 Reciprocal lattice correspondence (RLC) between FCC and BCC lattices for the elements of slip, twinning and stacking

faults.
FCC lattice BCC lattice
O {111} o O <111>
Slip plane: Slip directions (burgers vectors)
O {001} O <001>
o A {011}
Slip directions (burgers vectors) O <011> A {112}
o L . Slip planes: 27 {123}
fhcpt rrjlrecnons (partial dislocation burgers O <liz> 27 Non crystallo-
ector) graphic {hkl}
Twinning plane: 0O {111} Twinning shear direction: 0 <111>
Twinning shear direction: 0 <«112> Twinning plane: 0 {112}
Stacking fault plane: O {111} Burgers vector of partials © <111>
Burgers vector of partials O <112> Stacking fault: © {112}

[: Experimentally established facts

A: Evidence is limited

©: Not evidenced directly but geometrically probable
O: Geometrically possible in limited cases

77 Documented so far but geometrically improbable
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And therefore the polarity will be a useful point of view
in analyzing or predicting the properties. Stacking
faults(SF) and twins will be formed on the planes of
asymmetric stacking, as discussed later. Actually in fcc
metals, these are formed on {111} planes, as shown in
Table 2. As shown in Fig. 2, mechanical twinning in bcc
metals takes place on {112} planes having ABCDEF type
(six layers) stacking, and twins are formed by [111](112)
shear (called twinning shear) forming ABCDEDCBA...
type stacking, so that the atom array NOP in Fig. 2(b)
along [111] is transformed to a deflected array NOP’. But
twins are not formed by [111](112) or [111](112) shear
(called antitwinning shear), thus having polarity.

Martensitic transformation (MT) is a phenomenon
similar to deformation; the “deformation” can be defined
as a kind of MT in which the original lattice is trans-
formed into the same lattice, whereas in MT the lattice is
transformed into a different lattice. MT from fcc to bec
(or bet) lattices is associated with some shear deforma-
tions. In understanding the mechanism of MT, one of the
most important aspects is believed to be the presence of
polarity in the shear deformation. Examples will be
shown as follows. Crystallographic orientation relations
between martensite and matrix have been described in
terms of the Phenomenological Theories®. In the the-
ories, Latiice deformation, as suggested by E.C. Bain®
and is called “Bain strain,” is treated as the principal
operator in the mathematical formula of MT from vy to o
in ferrous alloys, i.e. ~20% compression along one of the
cubic axis (Z) and ~12% elongation along perpendicular
(X and Y) axes of austenite lattice, as shown in Fig. 3.
Therefore the Bain strain has polarity in view of the
“deformation” of austenite. The double shear mechanism
of y to o MT by J.S. Bogers and W.G. Burgers® will also
be said to have polarity, since the first shear in the
mechanism is parallel to the twinning shear i.e. along
[112] twinning direction on (111) plane in fcc lattice.
Significance for this will be described in the later section.

The author will call such polarity associated with
asymmetrical plane stacking as “SDP (Shear Deforma-
tion Polarity)” hereafter.

Several examples of applications, in which useful
information would be drawn from the RLC and SDP, will
be shown in the next section.

N

Fig. 3 Interrelation between the lattice deformation (e.g. Bain strain)
and the Bain orientation relation in y to a martensitic transfor-
mation in steel. (a) Hypothetical body centered tetragonal
lattice (®) in normal y (fcc) lattice (O). (b) Formation of o
(bcc) lattice (©) due to the lattice deformation from the
hypothetical bet lattice (@®). (¢) Orientation relationship
between y and o lattices.



A Simple Geometrical Approach to the Prediction of Plastic Properties of Metal Crystals 5

4. Applications of the Principles to Predict Uncertain
Plastic Properties

In this section, several disputable plastic properties of
bee metals will be discussed in view of the SDP and/or
RLC principle described above.

4.1 Slip Systems in BCC Metals

In fcc lattice, crystallography of slip deformation has
been well established so far. As shown in Table 2, slip
planes and directions are {111} and <011>, respectively.
{001} type slip plane (i.e. <110>{001} type slip system)
is also operative but is exceptional, as will be described
later. In bce metals, however, slip plane geometry is not
always evident, though the slip direction (i.e. the direc-
tion of Burgers vector (BV)) is definitely <111>. More
precisely, the slip planes have been considered to be
{011}, {112}, {123} or higher indices planes or even
noncrystallographic (“banal slip”) planes®». The limiting
condition which is geometrically available is that the zone
axes of the slip planes are parallel to the slip direction
<111>; the situation is called “pencil glide.”

4.1.1. Experimental evidence

Such crystallographic uncertainty of the slip planes in
bec metals is due to much wavy nature of slip traces
observed metallographically on deformed crystal surfaces,
as compared to fcc metals.

Besides the slip trace analysis, the orientation change
(i.e. rotation of orientation) of crystals, or the asterism of
diffraction spots due to deformation have been examined
by X-ray diffraction methodst*7 9, Generally speaking,
however, the asterism will be an indication of lattice
curvatures which are formed by dislocations remaining in
the crystal. In view of finding the operative slip elements,
information is necessary on the dislocations which have
passed through and gone out of the crystal. The rotation
of orientation will meet the requirement, but in conven-
tional tensile testing, the slip direction can only be identi-
fied by the stress axis rotation, but no information is
available on the slip plane®. As a result, either the
asterism or the axis rotation measurement by X-ray
diffraction is not an effective means for the determination
of the slip planes. Exemplary experimental results for the
slip system determination in bcc metals and alloys are as
follows. C.S. Barrett er al.® stated “Slip in iron is on

{011}, {112} and {123} planes at all temperatures inves-
tigated (between 77 K and 810 K), but in iron silicon
alloys low deformation temperatures or silicon contents
higher than ~4 mass% (hereafter denoted as “%”) cause
slip to be confined on {011} planes.” This result will
suggest that the {011} planes are the most substantial slip
planes in bcc lattice.

Actually, R. Maddin er al. proposed on the basis of
observations by Mo or Nb® that the {011} is the only
elemental slip planes, and that wavy slip traces would be
a result of statistical choice among non-parallel {011}
elemental slip planes. This view will be called “elemental
slip criteria” hereafter.

Detailed optical microscope studies in NRIM_ for
several substitutional iron alloy single crystals have
shown that the slip traces are not always parallel to
crystallographic planes with low Mirrer indices(%!2. This
is not surprising because such slip traces are the intersec-
tions of slip bands (i.e. deformed region which many
dislocations passed through) with the crystal surfaces.
Since the slip bands have some width, the band traces are
not always parallel to the slip traces of individual disloca-
tions. Even with direct observations of slip trace of
individual dislocations in Fe-3%Si( or in Nb(4), either
view of the elemental slip criteria or the crystallographic
slip on low indices planes is not supported by in situ
deformation in a high voltage transmission electron
microscope (TEM). Slip traces of individual dislocations
in a slip band were nearly parallel but not exactly parallel
to the band trace(.

4.1.2. Geometrical prediction

In this way, it is not possible experimentally to get
more detailed crystallographic view of the slip plane
geometry at present. So, application of the RLC principle
has been tried to make assure probable slip planes in bee
lattice from established crystallography of slip systems in
fcc lattice, as shown below.

Table 2 shows predicted elements of twinning, stack-
ing faults and slip which have not always been estab-
lished in bcc. Experimentally established facts in fec
lattice (which are also shown in Table 2), are the basis for
the prediction in bee lattice.

Slip planes in bec is considered to be identical to the
slip direction in fcc according to the RLC. First of all,



Table 3 Slip geometries and b/d for total dislocations in BCC
or FCC lattice.
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Table 4 Slip geometries and b/d for partial dislocations in BCC
or FCC Lattice.

<011> and <112> are the slip directions in fcc lattice,
since the former and the latter are parallel to the BV of
total and partial dislocations, respectively. But <123> or
other directions of higher indices can not be the slip
direction in fcc lattice. From these facts it may be con-
cluded that {011} and {112} planes are probable slip
planes in bcec lattice, but the planes of {123} or of higher
indices are improbable.

In the second place, slip on {001} planes has been
observed in aluminium in limited conditions®> 9 like
high temperatures. According to the RLC, slip along
<001> direction can have reality in bcc lattice, as
predicted from the operation of the {001} slip plane in
fcc. Since no experimental evidence had been provided
for the <001> slip operation in bcc metals, an experimen-
tal trial for the confirmation was performed at NRIM by
Shin Takeuchi” but was not successful. On the other
hand, in an ordered bcc lattice, ie. CsCl type (Bl)
structure, <001> slip is known to operate as well as
<111> slip, depending on the bonding nature being non-
metallic or metallic!®. For example, in intermetallic NiAl
crystal <001> is the major operative slip directions, but in
FeAl <111> slip is mainly operative. This will be another
evidence for the hard operation of <001> slip in (disor-
dered) bec structure, because the ordering makes the
operation of conventional <111> slip more difficult, since
the slip disturbs the ordered lattice, while <001> slip does
not.

Besides these, <001> dislocations are considered to
have high Peierls stress, as shown below. Table 3 shows
the geometrical parameters of total dislocations in bcc
and fcc lattices. The Peierls stress for dislocations is
estimated by equation (1) as a function of a parameter
(b/d), where b and d are the size of the Burgers vector

) Burgers Slip Slip p}ane ‘ Burgers Slip Slip p}ane
Lattice |\, "By IBV| = b| plane spacing b/d Lattice Vector | [BV] = b | Plane spacing b/d
{hkl} (d BV {hkl} G))
af2<111> | V3a/2 {011} a2 1.225 a/6<111> | V3a/6 {112} a6 0.707
BCC a <100> a {011} a2 1.414 BCC a/8<011> | vZa/8 {011} a2 0.250
a/2<111> | v3a2 {112} a6 2.121 a/4<211> | V6a/d {011} a2 0.866
a/2<111> | V3a/2 {123} aiV14 3.240 FCC a/6<112> | a6 {111} a3 0.707
. a/2<011> | aW2 {111} a3 1.225
a/2<011> | aN2Z {100} a 1414

and slip plane spacing, respectively. Other parameters, oy,
G and v are Peierls stress, shear modulus and Poison’s
ratio, respectively.

o, = { (12_GU)JeXp[b(~121ti)} ...................... M

Therefore, <001> slip seems rather hard to operate
than <111> slip in bcc lattice. Thirdly, the activity of
<11i> slip for different planes is also suggested from
Table 3; as far as the total dislocations in bce are con-
cerned, slip planes other than {011} are not operative in
view of the high Peierls stresses (high b/d values).
However, the situation will be modified when the disloca-
tions are extended. Table 4 shows partial dislocations
have much lower values of b/d than total dislocations.
This will be a reason which, in spite of the loss of energy
due to stacking fault formation, makes possible for the
operation of slip on {112} plane on which dislocations
are considered to be extended in bec lattice (see 4.4).

4.2 Deformation Textures

The deformation texture, i.e. preferred orientation
distribution developed by plastic deformation, is the next
subject of applying the RLC. Since the deformation tex-
ture is correlated with the deformation by slip, the same
kinds of discussion in 4.1 will be applicable. In case of
uniaxial deformation, simple formulation is possible. For
example, in case of tensile or compressive deformation
under single slip operation, there is a general tendency
that

a.) the tensile direction rotates to the operative slip
direction, and

b.) the compression direction rotates to the slip plane
normal(h 19 20),
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Table 5 Uniaxial deformation textures

Table 6 Rolling (biaxial) textures

Deformation mode Textures in FCC | Textures in BCC
(reference axis for texture Refer- Refer-
presentation) ence ence
TENSION (parallel to the| <1i1> | (19) | <011> | (20)
axis) <112> | (19)
DRAWING (parallel to <1l> | (1), 3) | <011> | (1), (3)
the axis of wires) <001> | (1), (3)
<011> | (1), 3) | <111> | (1), (3)
tCOMPRE.SSION (paraliel <112 20)
o the axis)
<001> | (3), (20)
TORSION (parallel to the| <111> ©) <011> €]
longitudinal direction) <112> )]

But in practice, experimental texture data for tension
textures are not available, because it is difficult to deform
by tension to such large strains that deformation textures
would be developed. The rotation of orientation in single
crystals can be used to estimate the tensile texture
instead. Drawing textures are available to simulate the
tensile deformation too, though the stress states in draw-
ing is more complicated than in tensile deformation. As
far as the plastic strain is concerned, drawing is nearly
equivalent to tensile deformation.

Torsional deformation will also provide a texture in
which slip plane tends to rotate to become parallel to the
plane of maximum shear stress (i.e. the plane normal to
the specimen axis). Table 5 shows the textures developed
under such uniaxial deformation modes. From Table 5
one will find the RLC principle is valid; crystallographié
parallel relation exists between tensile (or drawing) tex-
tures in fcc and compression textures in bec, or vice
versa.

The RLC principle also holds in biaxial rolling tex-
tures, as shown in Table 6, one will look at the parallel
relation between rolling direction in fcc and rolling plane
normals in bee, and vice versa. In actual rolling deforma-
tion, three dimensional internal stresses®) and multiple
operation of slip systems are involved. In appearance,
however, rolling textures consist of a combination of
tensile texture along the rolling direction, and compres-
sion texture along the rolling plane normal. This will be
due to the fact that there are some geometrical limiting
conditions in selecting the operative slip systems in roll-
ing; the conditions will be similar to the above mentioned
principles (a) and (b) for uniaxial case.

FCC ] BCC
Parallel to the rolling Reference
Direction Plane Direction Plane
<112> {110} %)
<111> {112} 6
<001> {110} (66), (3)
<110> {001} o)
<110> {112} 67, 3)
<112> {111} 67, (3)
A
>
B
P ™
A
TD = a/2 {011)
LP = a/6 [112]
TP = a/6 [121]
TD=LP+TP

(b)

Fig. 4 Drawings showing the relation among atomic stacking struc-
ture of an extended dislocation accompanied with a stacking
fault (SF) in fcc lattice, and Burgers vectors for total disloca-
tions (TD) and for (leading or trailing) partial dislocations (LP
or TP, respectively).

4.3 Polarity in Slip in FCC and BCC Metals

The polarity of slip deformation in fcc lattice will be
described first. According to the SDP principle,
<112>{111} slip system in fcc has polarity but
<011>{111} slip system not. In other words, the polarity
exists in partial dislocations but not in total dislocations.
The polarity in partial dislocations will now be described
in detail. It is wellknown® that total (perfect) dislocation
(TD, having Burgers vector BV = a/2[011)) in fec lattice
is divided into two Shockley partial (incomplete) disloca-
tions (having BV = a/6[112] and a/6[121]), and a piece of
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Fig. 5 The first experimental data showing the polarity in {112} slip in bcc transition metal of iron by T. Taoka et al19, (a) and (b) Tensile
orientations of Fe-3 mass%Si single crystals investigated, and (c) Orientation dependence of yield stress at room temperature. Marks O
and x indicate values for [111] and [111], respectively. Marks O are replots of the abscissa of x by regarding the slip direction as [111].

stacking fault (SF) ribbon is. formed between the two

partials, as shown in equation (2) and in Fig. 4.

Zlo1T]=2n2]+ H[121]

In the absence of applied stress, the distance between
the partials or the width of SF ribbon is inversely depen-
dent to the SF energy. In the presence of applied stress,
the two partials are called as “leading partial (LP)” and
“trailing partial (TP)” respectively, depending on the
migration direction (md.). SF extends only when the
resolved shear stress for LP is larger than that for 7P, In
other words, SF extends if the LP and TP are the twin-
ning partial (e.g. AB or A'B in Fig. 4) and antitwinning
partial (e.g. BA or BA'), respectively. These are the
mechanism of polarity in <112>{111} slip in fcc lattice.

In bcc lattice, polarity is expected in any <111>{hkl}
slip system except <111>{011} by the SDP principle. As
described in section 4.1, however, slip planes other than
{011} and {112} are not present. Therefore, <111>{112}
is the only slip system of having polarity.

Experimental evidence for the polarity of slip in bcc
was known on 8 brass or alkali metals from the early
times, but not in bcc transition metals until 1964, at
which strength polarity in an iron alloy was found by T.
Taoka et al. at NRIMU9. This was the result of an
experimental work which was designed to confirm the
simple prediction that twinning shear would cause slip
polarity in <111>{112} slip of Fe-3% Si alloy(® 1,
Figure 5 shows an example of the data by T. Taoka et
al.(9, Tensile stress was applied to the single crystals of
various orientations shown in Fig. 5(b). The orientation
dependence of yield stress is shown by solid line in
Fig. 5(c). When the operative slip system is confined only
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Fig. 6 Standard stereographic projection of reference orientations
used in this report for cubic crystals.

to [111](101), the expected orientation dependence of
yield stress will be shown by dash line. The actual yield
stresses of Sp.B and B’ are lower than the dash line, and
this means the slip operation on {112} type planes is
easier than on {011} planes in “Sp.B” or “Sp.B”, This
will provide a positive evidence for the physical reality of
the {112} slip. Another point to be noted is that the yield
stress of Sp.B’ oriented to have twinning shear is evi-
dently lower than that of sp.B oriented for antitwinning
shear. The presence of the slip polarity in the operation of
the <111>{112} system is thus proved.

At that time B. Sestak er al.@®® found the difference
of yield stress in Fe-Si alloy single crystals between
tension and compression mode of deformation, but they
attributed the difference to the normal stress effect. The
explanation by Sestak er al. seemed incorrect and later
their results were proved to be due to the slip polar-
ity1o, 1),

After the discovery, similar slip polarity was found in
many other bcc transition metals of Nb@ 24, Ta@)
Mo@ 26 and W@, Since then, the significance of the
polarity of slip has been recognized as an evidence for the
asymmetric structures of dislocation core in bcc metals.
Many computer simulation studies on the dislocation core
structures and Peierls stress calculation in bec lattice have
been made on this basis, as reviewed by P.B. Hirsch@ or
J.W. Christian®,

4.4 Mechanical Twins and Stacking Faults in FCC
and BCC Metals

In both cases of bcc and fcc metals, mechanical
twinning occurs when the applied stress has maximum
resolved stress on the twinning shear (as shown before),
but does not on the antitwinning shear®®, This fact is well
recognized in bee metals in which mechanical twinning is
a proper mode of deformation. However in fcc metals,
mechanical twinning is harder to occur than in bce
metals. In fcc pure metals twinning does not occur except
at cryogenic temperatures®2 3, but in alloys twinning is a
mode of deformation under wider conditions®?. The
twinning is active at early stages of deformation in bec
metals and it is reduced by slip operation, but it continues
to higher strains in fcc alloys®® 3L 33, When the stress of
twinning shear is applied to fcc metals, the SF ribbon
between the leading and trailing partials is made
extended. In other words, the same sense of polarity
exists between twinning and SF formation.

The extended dislocation in fcc is composed of two
partial dislocations and a piece of SF between them. The
SF is composed of two atomic layers of fault, which is
regarded locally to be hcp lattice. From this, it will be
said, in general, that SF is a kind of defects which, firstly,
provide local atomic displacement similar to the phase
transformation, and, secondly, are surrounded by partial
(incomplete) dislocations. As will be shown later, there
exist some cases in which incomplete dislocations are not
always twinning dislocations.

The possibility of the SF in bcc metals has been the
matter of controversy, and the reality has not been estab-
lished yet. Though there exist some experimental obser-
vations of SF in bcc by TEM, the evidence has been
confined to unalloyed niobium®* 39, This has made one
to consider as due to some artifacts, since Nb has high
solubility of hydrogen or other interstitial elements, and it
has large tendency for the impurity absorption during the
specimen preparation.

According to the analogy to fcc metals, the most
probable SF in bcc metals will form on the twinning
planes, with a shearing along the twinning directions, as
has been proposed previously®6 37, This type of SF will
be called as “Twin-type”SF hereafter. The stacking of
{112} plane in bcc is six holds, as seen in Fig. 2(a). The
shear system of the SF will be the same as that in
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Table 7 Mirror indices of the “twinning planes” in the CSL
Model; i.e. the planes on which most densely packed coincident
sites are located (after D.G. Brandon®“?)

5 Twinning Plane
FCC BCC
3 {111} {112}
5 {012} {013}
7 {123} {123}
9 {122} {114}
11 {113} {233}
13a {023} {015}
13b {134} {134}
15 {125} {125}
17a {014} {035}
17b {223} {334}

twinning; a/6<111>{112} in this case, as described by the
first right term of equation (3).

%[m](i 12)- %[m](i 12)+ %[m](f 12) @3

This concept for SF in bcc is coincident with the
prediction by the RLC, as already shown in Table 2.

However, since bce is not a close packed structure,
the SF energy will be very high essentially irrespective of
the planes on which the SF lies. Therefore the width of
extended dislocations will be invisible by means of TEM.
According to H. Suzuki, the SF energy on {112} plane of
bee iron is estimated to be ~950 mlJ/m?, and resulting
distance between partial dislocations would be smaller
than bG7.

Besides the SF on {112} plane, several theoretical
possibilities of SF in bcc have been proposed on e.g.
{011}68 3 or {013}6> 4D plane, but there is no direct
experimental evidence to date. Among them, SF on
{013} will be geometrically possible by the SDP since
the stacking of {013} plane is asymmetrical. Evidence of
twinning on the {013} plane®) will also support the
possibility for SF on the {013}. Further possibility of the
Twin-type SF will be suggested; i.e. SF on the “twinning”
planes other than X 3 appearing in the Coincident Site
Lattice (CSL) model“?, e.g. {012}, {123} etc. in fcc and
{013}, {123} etc. in bcc, as shown in Table 7. Since
annealing twins of £ 11, £ 9, £ 17 or £ 13 type have been
identified in fcc metals of copper and Fe-Ni alloy®?, the

Ei-ichi FURUBAYASHI

possibility for the SF on these “twinning” planes in bcc
can not be neglected at present, though such SF seems
improbable.

On the other hand, Twin-type SF on symmetric
{011} plane will be impossible by the SDP principle.
However, J.B. Cohen et al.® proposed a model suggest-
ing the SF other than twin type SF in bcc; that is,
extended dislocation on {011} plane would consist of
three partial dislocations, as shown in equation (4).

%[111}:%[011]+§-[211]+%[011] ,,,,,,,,,,,, @)

The SF in this case is composed of three atomic layers,
and among them two types of faults are involved. Each of
the three faults makes the bcc lattice into deformed fcc or
hep lattice.

4.5 Polarity of Shear in Martensitic Transformation
and Variant Selection

The theoretical formulation of crystallography of the
martensitic transformation (MT) has been provided by
M.S. Wechsler et al® or by I.S. Bowles and J.K.
Mackenzie®? in terms of the matrix algebra. These
“Phenomenological Theories” have provided very
accurate description of the observed crystallographic rela-
tions between the lattices before and after MT, but the
accuracy does not always help us to construct kinematic
mechanisms of transformation. For example, it is not
possible even briefly to predict a variety of orientations of
transformation products (due to variant selection) with the
theories.

Among many properties associated with MT, the
variant selection will be one of the most realistic proper-
ties, because it can be analyzed from the experimentally
available data of orientations. But the analyses of
observed orientations or textures by existing variant
selection models were not successful, until new models
with experimental support were proposed by Y. Higo et
al.¥s, M. Kato and T. Mori®? and E. Furubayashi et
al. 450 and H. Miyaji et al.®! 52, This is because in
unsuccessful models, we believe, the polarity has not
been taken into account in the “deformation” associated
with MT. The polarity is the most essential nature in the
variant selection phenomena and probably in the transfor-
mation mechanism itself.
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Table 8 Orientation relations for martensitic transformation
from y to o in ferrous alloys.

Mutual orientation difference in
Title of Lattice martensite A 6 (deg)
relation | Correspondence | Referring | Referring | Referring
to Bain to N to K-S
4 {001}y // {001}«
Bain <1005y // <110>g 0 9.74 11.06
({111} // {011}a
N 13>y )} <01T>g| 074 0 5.26
] (111} // {011} |
ks <O01T>y Jf <11T>q| 108 5.26 0
. {100} // {011} B
Pitsch <01T>y J/ <11T>q 9.74 8 526

As described below, the range of orientation distribu-
tion of transformation products does not change virtually
with or without variant selection if one apply the models
without polarity. The lack of the polarity concept seems
to be a cause of confusion in the variant selection analy-
sis, as described below.

4.5.1. The orientation relationship as a formulation of
transformation mechanism

For the MT in ferrous alloy systems, Kurdjumov-
Sachs (K-S)G3, Nishiyama (N)©%, Pitsch®%), and
Greninger-Troiano (G-T)¢9 besides the Bain® are known
as the orientation relation or the lattice correspondence, as
shown in Table 8.

As will be seen in the table, orientation differences
among these relations are very small. Each orientation of
the variants in K-S et al. is distributed around the orienta-
tion of Bain variants®® 5, Experimental accuracy of
orientation determination by early works with the X-ray
diffraction method®* % seems insufficient in distinguish-
ing each of the relation. This is because the orientation
distribution in the cross section of incident X-ray beam
was so large that the diffraction spots came from many
transformed crystals. Even with the recent diffractometer
methods, the situation will not be improved. The use of
the electron diffraction® %9 is worthy to note in view of
the small beam size, but will make another inaccuracy
problem due to theoretical uncertainty in the place-
orientation determination®”, and has been pointed out as
insufficient to distinguish them®®.

Therefore, these orientation relations (i.e. K-S, N,
Pitsch, as well as Bain) should be of conceptional or
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Table 9 Crystallographic concepts involved in orientation
relations or lattice correspondence in y to o transformation in
ferrous alloys.

Title of Lattice Concepts Polar-
relation correspondence involved ity
. {001}y // {001}« : .
Bain <1005, // <1105 Bain strain )
Parallelism of closest-
N {111}y /7 {01}« packed planes 9

<1125y [/ <01T>¢ ?

Parallelism of closest-

{111}y /7 {011}« packed planes

K-S Parallelism of *
- - arallelism of nearest

<01I>y / <111>q atom direction

= Parallelism of close-
{1003y /7 {011}a packed planes

Pitsch - . X
<01T>, J/ <11T>a Parallelism of nearest N

atom direction

theoretical meanings, rather than experimental evidence.
For this meaning, we are going to discuss the theoretical
concepts involved in these relations. The G-T relation will
not be discussed, because this does not seem to be other
than an experimental relation.

Table 9 shows the concepts involved in the orienta-
tion relations in MT from fcc to bee lattice. In this table,
the Bain relation has polarity as mentioned earlier, but
K-S or Pitsch relation does not have polarity because of
the SDP principle. The concepts involved in N relation is
not clear.

4.5.2, Variant selection models in view of polarity

Variant selection models which have been reviewed
before® 5059, will be described briefly. The MT interacts
with external stress because MT has an element of shear
deformation. Since each martensite crystal (called variant)
transformed from an original austenite crystal is accom-
panied with a different deformation component (which
will be called “Characteristic Deformation (CD)” here-
after), the variants are selected to form under the action of
stress. The most wellknown concept for CD will be the
change in external shape, as proposed by J.R. Patel and
M. Cohen®®, This has been called “Shape Deformation
(SD)” model. However, this model has been proved
incorrect by detailed TEM study of Y. Higo et al.¢®).

There were some investigators who considered the

deformation by operative slip in austenite as CD®-53)., A
unique combination of the plane and direction of opera-
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Table 10 Variant selection models in the y to o martensitic

transformation
Characteristic Or_ientation . Polarity
Models Deformation CD Relation used in of CD
Calculation®® 49
SD Shape deformation - ?

Deformation due to
ASS dislocations of active K-S X
slip system in y

Deformation due to

BPBR inactive slip system in K-S x
Y

TS Twinning shear N ®)

BS Bain strain (lattice Buain o

deformation)

tive slip (i.e. for total dislocations) is used to select the
K-S variants. This model has been called “Active Slip
System (ASS)” model®® 50 59 J.C. Bokros and E.R.
Parker®), on the other hand, found that the normal direc-
tion of each martensite habit plane lay close to one of
several slip directions of inactive slip system. On this
basis, F. Borik and R.H. Richman® explained transfor-
mation texture and calculated the variants in a similar
way to the ASS model. This will be called “Bokros-
Parker-Borik-Richman (BPBR)” model, though it was
called “BP” model formerly®“ 559, In the BPBR model,
such variants do not appear that are related with active
slip systems. Therefore, variants selected by BPBR and
ASS models are complementary and the two models are
incompatible with each other. Besides, in the ASS or
BPBR model polarity is not taken into account because of
the use of K-S relation. Computer simulation studies of
transformation textures were made with these models and
compared with experimental textures, but the results re-
vealed the invalidity of the models®® 59,

Y. Higo et al.“® have adopted the first shear (i.e.
twinning shear) in the double shear mechanism® as CD.
This has been called “Twinning Shear (TS)” model. N
relation has been proposed convenient in the application
of TS model®“® 30, The Bain strain has also been regarded
as CD®7% %850 This has been called “Bain Strain (BS)”
model. The use of Bain relation has been recommended
as an effective ways in applying BS model® 50, The
important point is that the polarity has been integrated in
these two models, as described in the previous section.
With these two models, good matching between
experimental data and theoretical predictions have been

obtained®*% 59, Comparisons among the models are
summarized in Table 10.

In conclusion, BS and 7S models in which polarity
concept is integrated are successful, but ASS and BPBR
models without taking account the polarity are unsuccess-
ful in explaining the variant selection phenomena.

5. Summary and Conclusion

Conclusions drawn from the above discussion will be
summarized as follows.

1) The RLC principle is widely applicable in the
geometrical plastic properties between bcc and fcc
metals, and established properties of a lattice can be
used to predict uncertain properties of the reciprocal
lattice. Active slip planes in bec lattice is concluded
exclusively as {011} and {112}; the reality of slip on
{123} or higher index planes is low.

2) The SDP principle is an important nature in under-
standing the plasticity, including martensitic transfor-
mation. The polarity in slip on {112} planes in bce
has been found experimentally as the result of appli-
cation of the SDP.

3) The slip along <001> direction in bce and the slip on
{001} plane in fcc are equally possible.

4) Deformation textures can be estimated from the RLC,
since the textures are formed as a result of slip
deformation.

5) Mechanical twinning and stacking faults in the cubic
lattices have been discussed based on the SDP and
RLC. Several geometrical possibilities of stacking
faults in bee are discussed but the presence of stack-
ing faults similar to fcc are not supported.

6) Orientation relationships of martensitic transforma-
tion are more or less theoretical, since experimental
accuracy to determine the relations does not seem to
be high enough for the distinction among them. In
this sense K-S relation does not represent the SDP
which is essential in the martensitic transformation.

7) Successful models, i.e. BS or TS models, of variant
selection phenomena in martensitic transformation are
those in which the SDP has been taken into account.
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BV: Burgers Vector . 5)
TEM: Transmission Electron Microscope (. 5)
D: Total (perfect) Dislocations ® 7
LP: Leading Partial (dislocations) (p. 8)
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K-S Kurdjumov-Sachs (relation) (p. 11)
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CD: Characteristic Deformation - 1)
SD: Shape Deformation (model) (p. 11)
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BPBR: Bokros-Parker-Borik-Richman (model) (p. 12)
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