
Journal of the Physical Society of Japan FULL PAPERS

Time-Reversal-Violating Photonic Topological Insulators with Helical Edge States
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Photonic Materials Unit, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan

We theoretically demonstrate the realization of photonic topological insulators in photonic crystals made of circular
cylinders with the Tellegen-type magnetoelectric coupling as a photospin-orbit interaction. Although the magnetoelectric
coupling breaks the conventional (bosonic) time-reversal symmetry for photons, the electromagnetic duality between
permittivity and permeability gives rise to a fermionic time-reversal symmetry. This symmetry along with the space-
inversion symmetry enables us to imitate the Kane-Mele model of two-dimensional topological insulators in a photonics
platform. Even if the space-inversion symmetry is broken, a photonic topological insulator can emerge owing to the
photospin-orbit interaction. We present bulk and edge properties of the photonic topological insulators and discuss their
possible realization.

1. Introduction
Topology plays a major role in current condensed matter

physics. The quantum Hall effect and topological insulator
(TI) are two landmarks that highlight topology in momen-
tum space.1, 2 Inspired by these two topics, recently, much at-
tention has been paid to topological phenomena of photons
in photonic crystals (PhCs), metamaterials, and coupled cav-
ity arrays. They include Hall effect of light,3 optical one-way
waveguide,4, 5 photonic analog of fractional quantum Hall ef-
fect,6 photonic TI (PTI),7–9 photonic Floquet TI,10 and syn-
thetic gauge field for photons.11, 12 Although many of these
phenomena are yet theoretical proposals, their experimental
verification has made substantial progress recently.13

Here, we pick up a PTI proposed by Khanikaev et al.8

They studied a photonic analog of the two-dimensional TI in
a certain PhC. It consists of a periodic array of metamaterial
rods with an effective off-diagonal magnetoelectric (ME) cou-
pling of the Pasteur type.14 The ME coupling acts as a spin-
orbit interaction for light. This coupling is an extension of
the so-called Drude-Born-Fedorov chirality15 and preserves
the time-reversal symmetry (TRS). The PhC structure in their
proposal is a metacrystal with multi-dimensional spatial peri-
odicity with two different length scales: One is a constituent
metamaterial rod with a subwavelength periodic structure of
split-ring resonators. The other is a PhC itself composed of
the metamaterial rods. A sophisticated design of the effective
ME coupling along with the electromagnetic duality between
permittivity and permeability is necessary.

To avoid the metamaterial design of the ME coupling, an-
other medium can be considered. It is a Tellegen medium,
which has an ME coupling without the TRS.16 A multifer-
roic material is a typical example of the Tellegen medium,
and can have various forms of the ME tensor.17 Composites
of the piezoelectric and piezomagnetic media also exhibit an
effective ME coupling through mechanical strain.18, 19 In the
former case, the ME coupling is built-in and has a strong
frequency dependence. In the latter case, the coupling can
be controlled by a Bragg stack with one-dimensional peri-
odicity. Again, it has a strong frequency dependence. Multi-
dimensional periodicity such as in the split-ring resonator ar-
ray is not required for these ME couplings.

Introducing such an ME coupling without the TRS seems
to contradict with PTI, because the usual TI is protected by
the TRS. In fact, the resulting (electronic) helical edge states
of TI and their robustness depend strongly on the Kramers
degeneracy due to the TRS. Although the TRS (and parities)
is broken by the ME coupling of the Tellegen type, we can
demonstrate a realization of PTI with the help of the electro-
magnetic duality and resulting fermionic TRS, as shown by
He et al. very recently for a square lattice.20 The electromag-
netic duality between permittivity and permeability is a key
item in this construction of PTI, and we require a sophisti-
cated design for the duality as in the metamaterial construc-
tion.

In this work, we develop and strengthen this idea, studying
a wider class of PhCs with and without the space-inversion
symmetry (SIS). Notions of effective hamiltonians are also in-
troduced. The Kramers degeneracy due to the fermionic TRS
and the photospin-orbit interaction by the ME coupling enable
us to construct PTIs. If the SIS is preserved in the PhCs, the
system can be mapped to the Kane-Mele model.21 Even if the
SIS is broken, the system can exhibit PTI, as predicted by an
effective hamiltonian. These predictions are numerically veri-
fied by evaluating edge states for various edge configurations.

This paper is organized as follows. In Sect. 2, we define our
PhCs and discuss their symmetry properties. Section 3 is de-
voted to presenting the effective hamiltonian around quartic-
degenerate modes at Γ and K(K’) points in the first Bril-
louin zone of the triangular-, honeycomb-, and kagome-lattice
PhCs. In Sect. 4, we study edge states in the PhCs, and helical
edge states are shown to emerge in accordance with the effec-
tive hamiltonian along with the Z2 indices calculated from the
photonic band structures. In Sect. 5, summary and discussions
are given.

2. Photonic Crystals Made of Magnetoelectric Media
Let us consider a uniaxial optical substance with the ME

coupling. We assume the following constitutive relation for
the electric displacement D and the magnetic field H:

D = ϵ0
←→ϵ E +←→χ B, (1)

H = (µ0
←→µ )−1B −←→χ t E, (2)
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←→ϵ = diag(ϵp, ϵp, ϵz), (3)

←→µ = diag(µp, µp, µz), (4)

←→χ =

 χp χo 0
−χo χp 0

0 0 χz

 . (5)

Such an ME coupling←→χ appears most typically in multifer-
roic materials, through the cross term χi jEiB j in the effective
Lagrangian. For simplicity, we assume real ←→ϵ , ←→µ , and ←→χ
to make the system dissipationless. In what follows, we as-
sume a frequency-independent large ME coupling for numer-
ical simulations. Since the ME coupling generally has a strong
frequency dependence via a resonance, the assumption is jus-
tified only for a narrow frequency range near the resonance.
Taking account of the scale invariance in the Maxwell equa-
tion, a numerical result of wide frequency interval should be
interpreted as a collection of patches. Each patch covers a nar-
row frequency range, and among different patches, the length
scales (or the lattice constants of the PhCs) are different.

The system breaks the conventional (and bosonic) TRS Tb.
The radiation field behaves under the time reversal as

E→ E∗, (6)

B→ −B∗, (7)

D→ D∗, (8)

H → −H∗. (9)

Here, the harmonic time dependence of the field is assumed,
namely,

F(t) = ℜ[Fe−iωt] (F = E, B, D,H). (10)

Under Tb, the constitutive relation for D becomes

D∗ = ϵ0
←→ϵ E∗ −←→χ B∗, (11)

which contradicts the complex conjugation of Eq. (1). There-
fore, real ←→χ breaks the TRS. The ME coupling also breaks
parity symmetries, because the electric and magnetic fields
are vector and axial-vector, respectively.22 Note that the rota-
tional symmetry with respect to the z-axis is preserved under
the assumption of Eqs. (3)-(5).

Although the constitutive relation of Eqs. (1) and (2) is nat-
ural, it is convenient to rewrite the relation as

D = ϵ0
←→ϵ EHE +←→χ EHH, (12)

B = µ0
←→µ EHH + (←→χ EH)t E, (13)

←→ϵ EH = diag(ϵEH
p , ϵEH

p , ϵEH
z ), (14)

←→µ EH = diag(µEH
p , µEH

p , µEH
z ), (15)

←→χ EH =

 χEH
p χEH

o 0
−χEH

o χEH
p 0

0 0 χEH
z

 , (16)

ϵEH
p = ϵp +

µ0

ϵ0
µp(χ2

p + χ
2
o), ϵEH

z = ϵz +
µ0

ϵ0
µzχ

2
z , (17)

µEH
p = µp, µEH

z = µz, (18)

χEH
p = µ0µpχp, χEH

o = µ0µpχo, χEH
z = µ0µzχz. (19)

The electromagnetic duality becomes simplified in this nota-

Fig. 1. (Color online) Schematic illustration of the system under study. It
consists of a periodic array of magnetoelectric cylinders with circular cross
sections.

tion, because E and H (or D and B) fields are formally simi-
lar in the Maxwell equation. The duality is simply defined by
←→ϵ EH =←→µ EH.

Suppose we have a parallel array of the ME rods arranged
periodically in the background medium. The background
medium is supposed to have scalar permittivity, permeability,
and vanishing ME coupling. Figure 1 shows a schematic illus-
tration of the system under study. We now restrict ourselves to
in-plane (the xy plane) light propagation perpendicular to the
rod axis (the z-direction). The Maxwell equation now reduces
to the following two-component equation for Ez and Hz:(

−∇ · (ξ∇∗) −∇ · (χ̃p∇∗) + [∇ × (χ̃o∇∗)]z

−∇ · (χ̃p∇∗) − [∇ × (χ̃o∇∗)]z −∇ · (η∇∗)

)
×

( √
ϵ0Ez√
µ0Hz

)
=
ω2

c2

(
ϵEH

z cχEH
z

cχEH
z µEH

z

) ( √
ϵ0Ez√
µ0Hz

)
,

(20)

ξ =
ϵEH

p

ϵEH
p µEH

p − (cχEH
p )2 − (cχEH

o )2 , (21)

η =
µEH

p

ϵEH
p µEH

p − (cχEH
p )2 − (cχEH

o )2 , (22)

χ̃p =
cχEH

p

ϵEH
p µEH

p − (cχEH
p )2 − (cχEH

o )2 , (23)

χ̃o =
cχEH

o

ϵEH
p µEH

p − (cχEH
p )2 − (cχEH

o )2 . (24)

The ME coupling of Eq. (5) is a generic form with rota-
tional symmetry. Here, we categorize the ME couplings into
uniaxial and off-diagonal types. In the former type, χo = 0,
whereas in the latter type, χp = χz = 0. In what follows, we
discuss the two types separately.

2.1 Off-diagonal magnetoelectric media
In the off-diagonal ME media, if the duality is met (ϵEH

p =

µEH
p and ϵEH

z = µEH
z ), we have ξ = η. In this case, the Maxwell

equation is decoupled into left and right circular-polarized
components as

− ∇ · (ξ∇ψL) − i[∇ × (χ̃o∇ψL)]z =
ω2

c2 ϵ
EH
z ψL, (25)
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− ∇ · (ξ∇ψR) + i[∇ × (χ̃o∇ψR)]z =
ω2

c2 ϵ
EH
z ψR, (26)

ψL =
√
ϵ0Ez + i

√
µ0Hz, ψR = i

√
ϵ0Ez +

√
µ0Hz. (27)

At χ̃o = 0, the equations for the L and R modes are the same.
The above equations are formally the same as the Maxwell

equation for the transverse-magnetic (TM) [or transverse-
electric (TE)] polarization in a magneto-optical medium of
the permeability (or permittivity):

− ∇ · (ξMO∇Ez) − i[∇ × (ζMO∇Ez)]z =
ω2

c2 ϵzEz, (28)

ξMO =
µp

µ2
p − κ2 , ζMO = −

κ

µ2
p − κ2 ,

←→µ =

 µp iκ 0
−iκ µp 0
0 0 µz

 .
(29)

Here, the magneto-optical coupling κ is proportional to the ap-
plied magnetic field or spontaneous magnetization. Therefore,
our system with the ME coupling is mapped to the magneto-
optical system in which the L and R modes are subjected to an
opposite (antiparallel) magnetic field. This mapping is remi-
niscent of the Kane-Mele model,21 in which the up and down
spins are subjected to the antiparallel magnetic fields owing
to the spin-orbit interaction.

Here, we can introduce a fermionic time-reversal operation
T f as

T f

( √
ϵ0Ez(x)√
µ0Hz(x)

)
≡

( √
µ0H∗z (x)

−√ϵ0E∗z (x)

)
, (30)

which satisfies T 2
f = −1 and is written as T f = iσ̂yK . Here,

σ̂i (i = x, y, z) is the Pauli matrix and K is the complex con-
jugation operator. The system with the electromagnetic dual-
ity is invariant under T f . On the other hand, the conventional
(bosonic) time-reversal operation Tb is given by

Tb

( √
ϵ0Ez(x)√
µ0Hz(x)

)
≡

( √
ϵ0E∗z (x)

−√µ0H∗z (x)

)
, (31)

which satisfies T 2
b = 1, and is written as Tb = σ̂zK . This

symmetry is broken because of nonzero χ̃o.
The fermionic TRS causes the Kramers degeneracy. Since

we are considering a periodic system, as shown in Fig. 1, pho-
tonic eigenstates are characterized by momentum k in the first
Brillouin zone. The fermionic TRS to our system implies

ωL(−k) = ωR(k), (32)

resulting in the Kramers degeneracy between L and R modes
at time-reversal invariant momenta. Besides, if the system has
the SIS, namely, θ(−x) = θ(x) for θ = ξ, ϵz, χ̃o, then we have

ωL(−k) = ωL(k), ωR(−k) = ωR(k). (33)

Combining Eqs. (32) and (33), we obtain the double degen-
eracy between L and R modes in the entire Brillouin zone.
If either the SIS or the fermionic TRS is broken, the double
degeneracy is lifted.

Typical photonic band structures are shown in Fig. 2 for the
triangular- and kagome-lattice PhCs with the electromagnetic
duality and SIS. To clarify the roles of spatial anisotropy, we
introduce different radii for the kagome lattice (but the SIS is
preserved). The plane-wave expansion method23 is employed
for the photonic band calculation. Since all the bands are dou-
bly degenerate, we have the quartic degeneracy at the Γ, K,
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Fig. 2. (Color online) Photonic band structures of periodic arrays of circu-
lar cylinders with the off-diagonal magnetoelectric coupling are shown by
solid lines. The background medium is air. All the bands are doubly de-
generate. The following parameters are employed for the magnetoelectric
medium (taken from Ref. 20 assuming a Bragg stack of piezoelectric and
piezomagnetic layers): ϵp = 2.5, µp = 5.714, ϵz = µz = 14.2, χo = 0.75
(ϵEH

p = µEH
p = 5.714). The large magnetoelectric coupling χo corresponds

to a value near the resonance of the elastic oscillation in the Bragg stack.
Therefore, strictly speaking, the calculation is justified in a narrow frequency
window near the resonance. (a) Triangular lattice. The radius of the rods is
0.1a, where a is the lattice constant. (b) Kagome lattice. The radii are 0.125a,
0.15a, and 0.1a. (c) First Brillouin zone and points of high symmetry. For
comparison, the band structure with vanishing ME coupling (χo = 0) is also
shown by dotted lines in (a). The Z2 indices ν of the photonic bands, in which
(−1)ν is the product of the parities at the time-reversal invariant momenta (Γ,
M, M’, and M”), are also indicated. Insets show unit cells.

and K’ points in the first Brillouin zone for vanishing cou-
pling χo in the triangular lattice. The quartic degeneracies at
K and K’ are of the Dirac type. These quartic degeneracies
are lifted into two doubly degenerate modes for nonzero χo.
As a result, all the bands are separated in frequency from each
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Fig. 3. (Color online) Photonic band structures of the honeycomb lattice
of circular cylinders before (dotted line) and after (solid line) introducing the
off-diagonal magnetoelectric coupling. The background medium is air. The
same material parameters as in Fig. 2 are employed. The radii of the cylinders
are taken to be 0.25a and 0.15a, where a is the lattice constant. Inset shows a
unit cell.

other. As for the kagome lattice, the quartic degeneracy is ab-
sent even at vanishing χo because of the spatial anisotropy.

In these systems, we can easily evaluate the Z2 indices de-
fined originally for the electronic band structure in TI.24 The
index ν is defined as

(−1)ν =
∏

k=Γ,M,M′,M′′
σP(k), (34)

where σP is the parity eigenvalue with respect to the space
inversion. According to the bulk-edge correspondence of TI,
if the sum of the Z2 indices (modulo 2) of the bands below a
gap is equal to 1, we obtain helical edge states in the gap. The
edge states are robust againstT f -preserving perturbations, but
are fragile against T f breaking perturbations. The calculated
Z2 indices suggests that the helical edge states are formed in
the gaps between the second and third bands and the third and
fourth bands for the triangular lattice, and the gaps between
the fifth and sixth bands and the eighth and ninth bands for
the kagome lattice. We will see in Sect. 4 that this is the case.

As an example of the system without the SIS, Fig. 3 shows
the photonic band structure of a honeycomb-lattice PhC. In
this case, the double degeneracy in the entire Brillouin zone
no longer holds at nonzero χo. However, along the ΓM inter-
val, the double degeneracy is observed. This is because of the
parity symmetry with respect to the axis. Namely, we have
θ(σx) = θ(x) for θ = ξ, ϵz, χ̃o, where σ is the parity opera-
tion. Since the parity operation swaps the L and R modes, we
immediately have

ωL(σk) = ωR(k). (35)

Therefore, if momentum k is invariant under the parity op-
eration (e.g., on the ΓM interval), we have the degeneracy
between L and R. The evaluation of the Z2 indices is rather
involved in this case. However, we can identify the gaps that
hold helical edge states using an effective-hamiltonian argu-
ment given in the next section.

2.2 Uniaxial magnetoelectric media
In the uniaxial ME media, the duality does not cause the

fermionic TRS. Instead, a bosonic TRS other than the con-
ventional one can be introduced:

T ′b
( √

ϵ0Ez(x)√
µ0Hz(x)

)
≡

( √
ϵ0H∗z (x)√
µ0E∗z (x)

)
. (36)

However, it does not yield the Kramers degeneracy because
T ′2b = 1.

To introduce a fermionic TRS, we need to assume the an-
tiduality ϵEH

p = −µEH
p (ξ = −η) and ϵEH

z = −µEH
z . The Maxwell

equation is then decoupled into L and R polarization sectors
as

− ∇ · ((ξ − iχ̃p)∇ψL) =
ω2

c2 (ϵEH
z − icχEH

z )ψL, (37)

− ∇ · ((ξ + iχ̃p)∇ψR) =
ω2

c2 (ϵEH
z + icχEH

z )ψR. (38)

The fermionic TRS T f = iσ̂yK and the SIS result in the dou-
ble degeneracy in the entire Brillouin zone. However, such
an antidual medium screens the radiation field everywhere in
space, and we could not find any example that exhibits pho-
tonic bands in the frequency range 0 < ωa/2πc < 1.

3. Effective Hamiltonian
In the previous section, we presented PhC structures with

ME couplings as a photospin-orbit interaction. The electro-
magnetic duality enables us to introduce the fermionic TRS
from which the Kramers degeneracy is derived in a photonics
platform. These items along with the Dirac-cone dispersions
in triangular, honeycomb, and kagome lattices can be used to
imitate the Kane-Mele model of the two-dimensional TI. Its
effective hamiltonian is given by

HKM = v(τzσ̂xkx + σ̂yky) + szτzσ̂zM. (39)

Here, τz(= ±1) is the valley spin, and sz(= ±1) is the real
spin. It has energy eigenvalues E = ±

√
v2 k2 + M2 regardless

of the valley and real spins. Therefore, in a given valley of
K or K’, eigenmodes are doubly degenerate with respect to
the real spin. We found that only the case of the off-diagonal
ME coupling with the SIS is mapped to the Kane-Mele model
modulo unitary transformation.

Let us consider the plane-wave-expansion form of Eqs. (25)
and (26):∑

g′

{
ξg−g′(k + g) · (k + g′)

+iszχ̃o;g−g′[(k + g) × (k + g′)]z

}
ψg′

=
ω2

c2

∑
g′
ϵEH

z;g−g′ψg′ , (40)

ψ(x) =
∑

g
ei(k+g)·xψg, (41)

θ(x) =
∑

g
eig·xθg (θ = ξ, χ̃o, ϵ

EH
z ). (42)

Here, we introduce the real-spin index sz, which is 1 for L and
-1 for R polarization. Since the equation is formally the same
as in the magneto-optical PhC, we can borrow the idea of the
effective hamiltonian applied to the magneto-optical PhC.
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The effective hamiltonian around the degenerate points in
the Brillouin zone was constructed explicitly by the present
author in Appendices of Ref. 25. For the triangular lattice, the
effective hamiltonian around the corner and the center of the
first Brillouin zone becomes

HK(K′) = vτz(σ̂zδkx − σ̂xδky) + szcχχoσ̂y, (43)

HΓ = (c1|k|2 + c2χ
2
o)1̂ + c3szχoσ̂y

+ c4[(k2
x − k2

y )σ̂z + 2kxkyσ̂x], (44)

where the coefficients v, cχ, and ci (i = 1, 2, 3, 4) are de-
termined with the unperturbed eigenstates at the degenerate
points. The deviation of the wavevector δk is measured from
the K (or K ’) point. The eigenvalues of the effective hamilto-
nians become

EK(K′) = ±
√

v2|δk|2 + (cχχo)2, (45)

EΓ = c1|k|2 + c2χ
2
o ±

√
c2

4|k|4 + (c3χo)2, (46)

resulting in the gapped dispersions. Note that the band gap
in the Dirac cone becomes a true band gap (regardless of δk)
if the Dirac point at K (or K’) is frequency-isolated. It gives
the band width of the helical edge states or resulting helical
optical waveguide.

The Chern number (for a given spin) caused by the Dirac
hamiltonian is given by the parity-anomaly form:25, 26

C =
1
2

(sgnMK + sgnMK′ ) = sgn(szcχχo) (47)

(MK = MK′ = szcχχo), (48)

if the relevant bands are touched solely at the K and K’ points.
In the quadratic hamiltonian the Chern number is given by

C = sgn(szc3χo). (49)

In both cases, the “charge” Chern number CL + CR vanishes,
whereas the spin Chern number (CL−CR)/2 becomes nonzero,
sgn(cχ(3)χo). Accordingly, the helical edge states are expected
to emerge in the relevant gaps. Such gaps are found in Fig.
2(a) (the gaps between the 2nd and 3rd and between the 3rd
and 4th bands), although the relevant bands are touched at
both Γ and K (K’) for vanishing χo. The relevant Z2 indices
are consistent with the spin Chern number.

As for the kagome lattice, we assume different cylinder
radii in Fig. 2(b) to see the roles of the spatial anisotropy.
There, even if the ME coupling vanishes, we do not have the
quartic degeneracy in the entire Brillouin zone. However, if all
the cylinders are identical, we also have the quartic degener-
acy at Γ, K, and K’. The k · p perturbation and the perturbation
of the ME coupling from the degenerate points give the same
effective hamiltonians as in the triangular lattice.

In the case of the honeycomb lattice without the SIS, non-
trivial topology emerges from the quartic degeneracy at the Γ
point. Therefore, the effective hamiltonian around the Γ point
is relevant. The effective hamiltonian was also derived in Ref.
25 for magneto-optical PhCs. By applying it, we obtain

HΓ = (c1|k|2 + c2χ
2
o)1̂ + σ̂yszc3χo

+ σ̂z(c4(k2
x − k2

y ) + szc5χo)

+ σ̂x(c42kxky − szc5χo). (50)

By diagonalizing the effective hamiltonian, we have a gapped
dispersion

EΓ = c1|k|2 + c2χ
2
o ±

√
Dk, (51)

Dk = c2
4|k|4 + (c5χo)2|k|2

+ 2c4c5χokx(k2
x − 3k2

y ) + (c3χo)2. (52)

The Chern number (for a given spin) is evaluated as

C = sgn(szc3χo). (53)

Therefore, the charge and spin Chern numbers are equal to 0
and sgn(c3χo), respectively, suggesting helical edge states in
the gap. Such gaps are found in Fig. 3 around ωa/2πc = 0.32
and 0.51.

4. Edge States
In this section, we consider photonic edge states in the

off-diagonal ME PhCs with and without the SIS. To prevent
possible edge states escaping from the PhCs, we introduce a
cladding by screened media.27

It is important to preserve the fermionic TRS also for the
screened media. Otherwise, PTI is broken. This constraint
implies that the electromagnetic duality must exist even in
the screened media. Here, we take a rather artificial setup
in which the permittivity and permeability of the screened
medium are given by

←→ϵ =←→µ = diag(1, 1,−1). (54)

A conventional screened medium, such as the perfect electric
conductor, breaks the fermionic TRS. Note that air is also a
dual medium with←→ϵ =←→µ =←→1 .

The method employed in the evaluation of the edge states
is the two-dimensional photonic Korringa-Kohn-Rostoker
method.28 We have extended the method to deal with cylin-
ders with the ME coupling. The basic algorithm is reported in
Refs. 29 and 30.

Figure 4 shows the dispersion relation of the edge state in
the triangular- and kagome-lattice PhCs, cladded by the dual
medium. We can see clearly gapless edge states in the bulk-
band gaps around ωa/2πc = 0.6 and 0.72 in Fig. 4(a), and
around ωa/2πc = 0.68 in Fig. 4(b).31 The relevant Z2 indices
of the gaps are 1. Therefore, the bulk-edge correspondence is
fulfilled. The edge states are shown to be helical by evaluating
their polarization properties. Moreover, the dispersion curves
of the edge states cross at a time-reversal invariant momen-
tum (k∥ = 0). The crossing is due to the Kramers degeneracy
for the edge states. Therefore, it is protected by the fermionic
TRS.

As for the gap around ωa/2πc = 0.8 in Fig. 4(a), we have
two pairs of the helical edge states. These edge states are not
robust against possible perturbations that mix the L and R
modes but preserve the fermionic TRS. Although the Kramers
degeneracy prohibits a gap opening at the crossing point of
k∥a/2π = ±0.5, the crossing at about k∥a/2π = ±0.4 yields a
gap by the perturbation. Resulting edge states are gapped.

Figure 5 shows the field configuration of the helical edge
state at the marked point p1 in Fig. 4(a). Since the mode under
consideration is inside the light cone (ω > c|k∥|), it has the
small imaginary part (inversely proportional to the Q factor)
in the eigenfrequency. As a result, the mode can be excited
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Fig. 4. (Color online) Dispersion relation of the edge states in the (a)
triangular- and (b) kagome-lattice photonic crystal stripes. Edge geometries
are shown in the lower panels. The same parameters as in Fig. 2 are employed
for the photonic crystal in the bulk. The photonic crystal stripe consists of an
8-layer stack in the ΓM’ direction. One side of the stripe is cladded by the
dual medium of ←→ϵ = ←→µ = diag(1, 1,−1) with semi-infinite thickness. The
other side is tangent to air (←→ϵ = ←→µ = ←→1 ). The shaded region stands for
the projection of the bulk band structure. Dots represent the edge states local-
ized near the clad side. Polarization (either L or R) of the edge states and the
Z2 indices of the bulk bands are also indicated. Lower panels show the edge
geometries.

by an incident light with a fine-tuned frequency. Actually, in
the simulation, a plane wave is incident on the structure from
the top (air side). The edge states are excited selectively by
the polarization of the incident light. If it is circular-polarized
with

(
√
ϵ0Ez,

√
µ0Hz) =

1
√

2
(1,±i)eik·x, (55)

k =
k∥,−

√
ω2

c2 − k2
∥

 , (56)

the mode at p1 in Fig. 4(a) is excited by the (1,+i) polariza-
tion. The Poynting vector flows clockwise around the cylin-
der. The mode at p2 in Fig. 4(a) is its time-reversal partner
and can be excited by the (1,−i) polarization. The Poynting
vector flow is now counter-clockwise (not shown).

To explore the properties of the helical edge states, we con-
sider two other types of edge termination in the triangular-
lattice PhC, aside from that shown in Fig. 4(a). One is the
edge normal to the ΓK direction with the cladding by the dual
medium. The other is the edge normal to the ΓM’ direction,
but the cladding is now replaced by the perfect electric con-
ductor. Figure 6 shows the corresponding edge-state spectra.
Emergence of the helical edge states is not modified for the
edge normal to ΓK, as shown in Fig. 6(a). However, if the
cladding is by the perfect conductor, gaps open for the edge
states. This is because T f is broken by the boundary condition
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Fig. 5. (Color online) Field configuration of the edge states at the marked
point (p1; k∥a/2π = −0.2) in Fig. 4(a). The absolute square of the electric
field is plotted. The edge state is excited by the incident plane wave coming
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by the Poynting vector flow.
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E∥ = 0 of the perfect conductor. In addition, the edge states
are not purely L- or R-polarized.

Finally, we consider the honeycomb-lattice PhC without
the SIS. In this case, the nontrivial topology stems from the
band-gap opening at the Γ point. Figure 7 shows the edge-
state spectra. The relevant band gaps are around ωa/2πc =
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Fig. 7. (Color online) Dispersion relation of the edge states in the
honeycomb-lattice photonic crystal stripes. The same parameters as in Fig.
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ΓM’ direction and (b) a 16-layer stack in the ΓK direction. The shaded region
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states. Polarization of the edge states (L or R) is indicated. Lower panels show
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0.32 and 0.51. We can see clearly the helical edge states there,
as predicted by the effective hamiltonian. Besides, we have
helical edge states in the gaps around ωa/2πc = 0.43 and
0.48. If we closely look at the former gap, we find two pairs
of the helical edge states, and the dispersion curves cross at
time-reversal non-invariant momenta. Therefore, the helical
edge states concerned are not robust. On the other hand, in
the latter gap, we have a single pair of the helical edge states.
They are not simply caused by the gap opening at the Γ point.
Rather, they are strongly affected by the gap opening at the
K and K’ points because the relevant bulk bands are crowded
there (see also Fig. 3). A band inversion in the two-parameter
space spanned by the difference in the rod radii and the ME
coupling is supposed to occur there.

5. Summary and Discussion
In summary, we have presented a detailed theoretical analy-

sis on the PTIs in the PhCs with the ME coupling of the Telle-
gen type. If the coupling is off-diagonal and if the electromag-
netic duality is met, the system is equivalent to a photospin-
dependent magneto-optical system. The SIS results in a di-
rect mapping of the system into the Kane-Mele model of TI,
around the Brillouin zone corner. As a result, we can real-
ize PTIs with helical edge states in the systems without con-
ventional TRS. Even if the SIS is broken, PTI emerges. It
originates from the gap opening around the Γ point by the
photospin-orbit interaction of the ME coupling. These results
are fully consistent among the Z2 indices of the bulk photonic
bands, the spin Chern numbers via the effective hamiltonian,
and the edge-state characterizations.

In our model of PTI, the roles of the fermionic TRS are
highlighted, because the bosonic TRS is broken. In contrast,
the metamaterial model of PTI8 has both the bosonic and
fermionic TRS. The robustness of the PTI is protected by the
latter symmetry, although there seems to be confusion about
this issue, as discussed below.

We have various difficulties in realizing PTIs experimen-
tally. The most serious problem is the electromagnetic dual-
ity. With the aid of the duality, the TE and TM modes are
degenerate. Therefore, the ME coupling gives a strong pertur-
bation to the system. If the duality is absent, the perturbation
is weak. Known multiferroic media do not have the duality. It
is thus too optimistic to assume a single-domain medium as
a constitutive material of realistic PTI. We are forced to deal
with composite media.

One possibility is a composite of the piezoelectric and
piezomagnetic media. The mechanical strain between the two
media gives rise to an effective ME coupling that is con-
trollable by the geometry of the composite. In addition, the
coupling can be enhanced by a structural resonance. Strong
piezoelectricity and piezomagnetism are usually realized in
ferroelectric and ferrimagnetic media, respectively. Since fer-
roelectric and ferrimagnetic media have large permittivity and
permeability, respectively, the effective permittivity can be the
same order as the effective permeability. Suppose that the
piezoelectric (piezomagnetic) medium has the volume frac-
tion x (1−x). Then, the effective permittivity and permeability
are given by

ϵeff = xϵPE + (1 − x)ϵPM, (57)

µeff = xµPE + (1 − x)µPM, (58)

where ϵPE(PM) and µPE(PM) are the permittivity and permeabil-
ity of the piezoelectric (piezomagnetic) medium, respectively.
By imposing ϵeff = µeff , we can find the appropriate volume
fraction for the duality.32

Even if the duality is met, we need to have a sufficiently
large ME coupling to create the photonic band gap that sup-
ports helical edge states. Known multiferroic materials and
composites of piezoelectric and piezomagnetic media exhibit
strong dispersions in their ME couplings. Away from possi-
ble resonance frequencies, their ME couplings are generally
small. Therefore, we need to fine-tune the system such that the
quartic degeneracies in the photonic band structure emerge
near the resonance frequencies. Therefore, it is still challeng-
ing to realize the PTI.

Although fine tuning is necessary, it is instructive to con-
sider the effects of detuning with respect to the electromag-
netic duality and the resulting fermionic TRS. To this end, we
employ the effective hamiltonian as in Sect. 3. For simplic-
ity, we consider Dirac points at K and K’ in the triangular,
honeycomb, and kagome lattices without spatial anisotropy.
If we neglect the detuning, the effective hamiltonian around
the Dirac point is given by Eq. (43). Introducing the detuning
between permittivity and permeability gives rise to an addi-
tional term in the effective hamiltonian as

∆HK(K′) = δD ŝy ⊗ 1̂, (59)

δD = cp(ϵEH
p − µEH

p ) + cz(ϵEH
z − µEH

z ), (60)

where ŝi is the i-th component of the Pauli matrix acting on
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Fig. 8. (Color online) Effects of the detuning δD between permittivity and
permeability, in terms of the effective hamiltonian around the Dirac point. (a)
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domain-wall states with nearly gapless dispersion curves. The band crossing
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ratio cχχo/δD is taken to be 2/3.

the real-spin space, and 1̂ is the 2 by 2 identity matrix act-
ing on the pseudospin space (relevant to the upper and lower
cones of the Dirac spectrum). The coefficients cp and cz are
determined from the degenerate wave functions at the Dirac
point. The valley dependence is absent in the additional term.
Including this term results in four eigenvalues of the effective
hamiltonian:

E = ±
√

(v|δk| + δD)2 + (cχχ0)2, ±
√

(v|δk| − δD)2 + (cχχ0)2.

(61)

The energy spectrum exhibits the band gap of width 2|cχχo|,
regardless of the detuning δD, as shown in Fig. 8. This gap
supports possible edge states connecting two valleys of K and
K’, but the resulting edge states are no longer helical. Namely,
the relevant edge states (such as in Figs. 4(a) and Fig. 6(a)
around ωa/2πc = 0.6) exhibit the band anticrossing at k∥ =
0 and become gapped. The gap width is proportional to the
detuning. In addition, the two edge states (originally L and
R polarized at zero detuning) are not paired by the fermionic
TRS. Instead, they are Ez and Hz polarized at the anticrossing
point. Therefore, the helical optical waveguiding in the bulk
band gap is lost immediately after introducing the detuning.

However, the situation changes markedly when we con-
sider a domain wall formed by two PhCs with opposite ME
coupling χo as in Ref. 8. The above effective hamiltonian pre-
dicts two domain-wall states with nearly gapless dispersions
inside the valley, as shown in Fig. 8(c). This is a generaliza-
tion of the domain-wall fermion in the Dirac hamiltonian.33

The dispersion curves cross at δk∥ = 0 regardless of the de-
tuning. This is because of a pseudo-time-reversal symmetry
the effective hamiltonian has. We can show that the effective
hamiltonian is invariant under

T pseudo
f = iŝx ⊗ σ̂yK , (62)

regardless of the detuning. It maps δk to −δk ( not as k to −k,
and thus we add “pseudo”) and is fermionic (T pseudo

f )2 = −1.
As a result, the Kramers degeneracy holds at the pseudo-time-
reversal invariant momentum δk∥ = 0, and the domain-wall

states are pseudo-helical (gapless and paired with the pseudo-
time-reversal partners).

Nevertheless, in the entire k∥ space, we can show via first-
principles calculation that the domain-wall states are not gap-
less nor paired with the time-reversal partner. Actually, the
dispersion curves of the domain-wall states do not traverse
the band gap nor terminate in the different (upper and lower)
bulk bands. This situation is quite similar to the domain-wall
states found in the nonmagnetic honeycomb lattice PhC with
Dirac spectrum.30 There, the domain-wall states seem to be
gapless inside a valley, but their dispersion curves do not tra-
verse the gap. Thus, if the detuning is nonzero, the PTI is
lost in a strict sense. However, the pseudo-TRS is emergent
within the effective hamiltonian, resulting in the nearly gap-
less domain-wall states inside the K and K’ valleys. A similar
mechanism works in the metamaterial model of PTI.8

As explained, the electromagnetic duality gives rise to the
fermionic TRS. This TRS is essential in our PTI. Besides, we
also found that even if the duality is absent, it is possible to
construct another fermionic TRS for honeycomb-lattice sys-
tems. Suppose we have two types of rods, namely, A and B
rods in the honeycomb lattice. If the permittivity and perme-
ability of the rods satisfy

←→ϵ EH
A =

←→µ EH
B , ←→µ TE

A =
←→ϵ TE

B , (63)

with off-diagonal ME coupling with

χEH
oA = χ

EH
oB (64)

or uniaxial ME coupling with

χEH
pA = −χEH

pB , χEH
zA = −χEH

zB , (65)

the system is invariant under a fermionic time-reversal opera-
tion defined by

T ′f
( √

ϵ0Ez(x)√
µ0Hz(x)

)
=

( √
µ0H∗z (−x)

−√ϵ0E∗z (−x)

)
. (66)

In this case, we do not need the electromagnetic duality in
each rod. Instead, we just need the duality between A and
B rods, which may be chosen from two different multifer-
roic media. Since T ′f does not change the momentum k, the
Kramers degeneracy is found in the entire Brillouin zone
without assuming the SIS. Note that T ′f involves the space
inversion. Therefore, the presence of an edge breaks explic-
itly this symmetry. However, if we consider a stripe shape, it
is possible to preserve T ′f . Although we could not find any
evidence, it may be interesting to search for topological phe-
nomena in such a system.

We hope that this paper stimulates further investigation on
photonic topological insulators by ME media.
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