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Chiral Domain-Wall States in a Quadratic Hamiltonian
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In two-dimensional lattice systems, the effective Hamiltonian around a doubly degenerate point at the Brillouin-zone
center can be of a similar form to the d-wave Bogoliubov-Nambu Hamiltonian. A band gap opens there if a perturbation
of time-reversal-symmetry breaking is introduced. In such a system, two domain-wall states with the same chirality
emerge around the interface between two domains having the gap parameters of opposite signs. The domain-wall states
have asymptotically quadratic dispersions, in contrast to the domain-wall state of the Dirac fermion, which has a linear
dispersion irrespective of the domain-wall profile. As an explicit example, we numerically study the domain-wall states
of photons in a honeycomb-lattice photonic crystal. The results are in agreement with those obtained using the effective
theory based on the quadratic Hamiltonian.

1. Introduction

A domain wall and a localized state in it are universal
items that many physical systems have in common. In the
lattice gauge theory, for instance, a domain wall in fictitious
five-dimensional space-time provides a means of constructing
chiral fermions on a four-dimensional space-time lattice.1 In
condensed-matter systems, a domain-wall state emerges re-
alistically. It is sometimes the case that a low-energy excita-
tion of a two-dimensional (2d) electron system is described
by massive Dirac fermions.2 The mass term is supposed to be
controllable by some means. If the system consists of two do-
mains that are in contact with each other, then a domain-wall
state with a linear dispersion emerges, provided that the mass
terms have opposite signs in the two domains.3 This is the so-
called domain-wall fermion, which is chiral in the sense that
it propagates unidirectionally.

The key point here is the sign of the mass, because it is
closely related to topology. The Chern number C of the Dirac
fermion, which represents the vorticity in momentum space,
corresponds to 1/2×sgn(M), where M is the mass of the Dirac
fermion.4 The Chern number in the bulk is directly related
to a possible edge mode as a consequence of the so-called
bulk-edge correspondence.5 It states that the number of pos-
sible interface states localized in the domain wall is given by
the difference in the Chern number between the two domains,
which is equal to 1 if the masses have opposite signs.

As described above, domain-wall states are often argued
in the context of the Dirac Hamiltonian for fermions. How-
ever, even if the Dirac Hamiltonian is not applicable, or even
if an effective Hamiltonian is given for bosons, it is possi-
ble to obtain domain-wall states with chirality. Here, we use
the term “chirality” as in quantum Hall systems. Namely,
“chiral” states refer to those propagating unidirectionally. A
landmark in this context is the realization of chiral domain-
wall states of photons using photonic Dirac cones.6 Here,
we present another nontrivial example found in a quadratic
Hamiltonian. The presence of such a state was already sug-
gested in 2d square photonic crystals (PhCs) with a bro-
ken time-reversal symmetry (TRS).7, 8 However, an explicit
derivation of domain-wall states, in a detailed comparison be-
tween a first-principles calculation and an effective Hamilto-

nian, is still lacking.
In this paper, we derive an effective Hamiltonian appli-

cable to both bosons and fermions, from the viewpoint of
the group theory. Under certain conditions for the underlying
lattice structure, a quadratic Hamiltonian is derived around
the Brillouin zone (BZ) center of lattice systems. Such a
Hamiltonian has a similar form to the d-wave Bogoliubov-
Nambu Hamiltonian,9 and can have a nontrivial topology of
the eigenstates in momentum space. Thus, the present study
sheds light on topological superconductors10, 11 from a differ-
ent angle. Next, we study domain-wall states based on an ef-
fective quadratic Hamiltonian. Under certain conditions, two
domain-wall states emerge, and are shown to be chiral. We
also show that their asymptotic forms in dispersion curves co-
incide to the band edges of a bulk band structure.

Taking the honeycomb-lattice PhC as a nontrivial exam-
ple, we numerically consider domain-wall states of photons
on the basis of the effective Hamiltonian around the BZ cen-
ter. The results are in good agreement with those obtained
by first-principles calculation of the PhC. The first-principles
calculation also highlights the edge states of open boundaries.
They exhibit marked contrast to domain-wall states in terms
of properties, but are also chiral.

One reason why such an effective Hamiltonian has not
been investigated well is the compatibility between the trans-
lational invariance of lattice systems and a TRS-breaking
perturbation. In conventional electronic systems, a TRS-
breaking perturbation such as a nonzero external magnetic
field destroys a simple lattice-translational invariance. An ex-
tra Peierls phase (Aharonov-Bohm phase) is accompanied by
lattice translation. As a result, the Bloch momentum inherent
in lattice systems loses its original meaning. Accordingly, the
k · p perturbation does not work under the TRS-breaking per-
turbation. One way to avoid the incompatibility is to introduce
a periodic magnetic field having zero flux per unit cell (UC).
In striking contrast, optics is free from such incompatibility,
because a photon is a neutral particle and thus no Peierls phase
is involved. Therefore, such an effective Hamiltonian with a
nontrivial topology is easily obtained.

This paper is organized as follows. In §2, we derive an ef-
fective quadratic Hamiltonian from the viewpoint of the group
theory. In §3, domain-wall states are analyzed on the basis of
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the effective Hamiltonian. In §4, we present an explicit ex-
ample of domain-wall states for photons using honeycomb-
lattice photonic structures. Both the first-principles calcula-
tion and the effective-Hamiltonian calculation are employed,
and their results are compared. The conclusion is given in
§5. In Appendix A, two physical systems showing effec-
tive quadratic Hamiltonians are presented. In Appendix B, a
group-theoretical argument is given in a model-independent
manner, to determine possible forms of the quadratic Hamil-
tonians.

2. Effective Quadratic Hamiltonian around Brillouin-
Zone Center

First, let us define the effective Hamiltonian under consid-
eration:

H = λ1|k|21̂ + λ2[(k2
x − k2

y )σ3 + 2kxkyσ1] + Λζσ2, (1)

where 1̂ is the 2×2 unit matrix, and σi (i = 1, 2, 3) is the Pauli
matrix. The eigenvalues of the Hamiltonian are given by

E± = λ1|k|2 ±
√
λ2

2|k|4 + Λ2
ζ . (2)

Here, the parameter Λζ corresponds to the gap at k = 0, and
has profound importance from the viewpoint of topology, as
we will see later. Such a Hamiltonian with a vanishing Λζ
emerges in triangular-, honeycomb-, and kagome-lattice sys-
tems with the C6v point group. If we allow a difference in
weight between (k2

x−k2
y )σ3 and 2kxkyσ1, it includes the square

lattice with the C4v point group.8 The honeycomb lattice with
the C3v point group results in the effective Hamiltonian of Eq.
(1) plus an additional term given by

∆H = Λkζ(kxσ3 − kyσ1). (3)

This term represents the anisotropy in momentum space.
The above point groups allow for 2d irreducible represen-

tations (IRRs), resulting in a doubly degenerate eigenmode
at the BZ center (Γ point). In fact, it is quite common for a
lattice system having one of the point groups to exhibit two
quadratic curves touching each other at k = 0. We can show
by the k · p perturbation that such curves are derived using the
effective Hamiltonian of the degenerate perturbation theory.
In addition, a nonzero Λζ can be explained by the first-order
perturbation of broken TRS. The derivation of the effective
Hamiltonian is given as follows (further details can be found
in Appendices).

Suppose that the full Hamiltonian to be diagonalized is
composed of the G-symmetric part H0 and the perturbation
H1. Here, G refers to the point group listed above. The zero-
th order Hamiltonian H0 is for k = 0 and can be solved, at
least numerically. The perturbation H1 includes the terms of
the nonzero k and the TRS-breaking one parametrized by ζ
(ζ = 0 corresponds to the vanishing perturbation). The eigen-
states of H0 are classified according to the IRRs of G. We
start with a doubly degenerate mode whose eigenvalue and
eigenvectors are denoted as E(0)

0 and |ψ(0p)
0 ⟩ (p = 1, 2), re-

spectively. The other modes are denoted as E(n)
0 and |ψ(n)

0 ⟩.
Then, the effective Hamiltonian for the degenerate mode in
the Lödwin perturbation scheme is given by

Hpq = ⟨ψ(0p)
0 |H

′|ψ(0q)
0 ⟩

+
∑
n,0

⟨ψ(0p)
0 |H′|ψ

(n)
0 ⟩⟨ψ

(n)
0 |H′|ψ

(0q)
0 ⟩

E(0)
0 − E(n)

0

+ · · · . (4)

We collect terms up to the second order in k and ζ. Gener-
ally, the first- and second-order terms in k satisfy

H (k)(k) = D†R(A)H (k)(Ak)DR(A), (5)

H (k2)(k) = D†R(A)H (k2)(Ak)DR(A), (6)

where R stands for the IRR of the doubly degenerate mode
concerned, A is an element of G, and DR(A) is a unitary rep-
resentation of A. Similarly, the first- and second-order terms
in ζ and the cross term in k and ζ satisfy

H (ζ) = detA−1D†R(A)H (ζ)DR(A), (7)

H (ζ2) = D†R(A)H (ζ2)DR(A), (8)

H (kζ)(k) = detA−1D†R(A)H (kζ)(Ak)DR(A). (9)

The above symmetry properties can be verified, for in-
stance, with a nonrelativistic electron under a periodic poten-
tial and a periodic magnetic field with zero flux per UC (see
Appendix A.1):

H =
1

2m
(p+ eA(x))2 + V(x), (10)

A(x + a) = A(x), V(x + a) = V(x), (11)

or its tight-binding model analog proposed by Haldane.12

Here, a is an elementary lattice vector. If a uniform magnetic
field is employed, the momentum k is no longer a good quan-
tum number.13 Thus, the above perturbation scheme does not
work.

These constraints on the effective Hamiltonian enable us
to derive its possible forms. The results are summarized as
follows (see Appendix B):

H (k) = 0, (12)

H (k2) =


c1|k|21̂ + c2[(k2

x − k2
y )σ3 + 2kxkyσ1]

(C3v,C6v)
c1|k|21̂ + c2(k2

x − k2
y )σ3 + c32kxkyσ1

(C4v)

, (13)

H (ζ) ∝ σ2, (14)

H (ζ2) ∝ 1̂, (15)

H (kζ) ∝
{

kxσ3 − kyσ1 (C3v)
0 (C4v,C6v) . (16)

Summing up all the terms, we obtain Eqs. (1) and (3).
Using the effective Hamiltonian, we can study the topolog-

ical properties of the eigenstates in momentum space. They
are characterized by the Berry phase or its variants, i.e., the
Berry curvature and Chern number. The Berry phase θB of the
eigenstate for a closed circle in momentum space is defined
by14

θB =

∮
dk · Ak, (17)

Ak = i⟨ψ|∇k|ψ⟩, (18)

where ∇k is the gradient operator with respect to k. By the
diagonalization of the effective Hamiltonian, the Berry phase
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of the eigenstate is evaluated as

θB = ±2πsgn(Λζ), (19)

for the upper (minus sign) and lower (plus sign) bands,8, 15

provided that the circle radius is small enough with respect to
|Λζ |. This phase suggests that the Chern number of the rele-
vant bands becomes ±sgn(Λζ). However, it is sometimes the
case that, in an unperturbed system, the two bands under con-
sideration touch other bands at different points in the first BZ.
This happens for the square lattice with C4v and the triangular,
honeycomb, and kagome lattices with C6v at a BZ corner. In
such cases, the topology of relevant bands is affected by the
BZ corner. Thus, the above estimation of the Chern number
will be modified.

In this way, we see that the parameter Λζ has profound im-
portance. It is remarkable that this parameter represents the
degree of TRS breaking of the system. Furthermore, in some
cases, it is controllable by applying an external magnetic field
(see Appendix A). For instance, if the magnetic field is in-
verted, Λζ changes its sign, resulting in a topology change of
the eigenstates in momentum space. This property gives rise
to novel domain-wall states in a controllable manner.

3. Domain-Wall States

Once we have an effective quadratic Hamiltonian for the
bulk system with the controllable gap parameter Λζ , we can
set up a domain wall formed by two domains having the gap
parameters of opposite signs. One way to realize the domain
wall is to employ antiparallel magnetic fields between two do-
mains in a magneto-optical PhC, as we will see in §5. Such
a domain wall may be physically interesting, because it can
be a platform of novel interface phenomena. As for the Dirac
Hamiltonian, a novel domain-wall state emerges, if the Dirac
mass parameters of the two domains have opposite signs. The
resulting domain-wall state, which is sometimes called the
“zero mode”,3 has a linear and gapless dispersion irrespective
of system details. Its condensed-matter realization has been
discussed recently within the context of topological insulators
and topological superconductors.16 Here, we should empha-
size that, even for the quadratic Hamiltonian discussed in §2,
we can show that similar zero modes emerge in the domain
wall.

Let us consider the effective Hamiltonian for a domain-wall
system. We assume that the system has two domains with gap
parameters Λζ of opposite signs. To be specific, suppose that
the two domains are separated at approximately y = 0 with
the following profiles of the gap parameter: Λζ(y) → Λ− <
0 (y → −∞) and Λζ(y) → Λ+ > 0 (y → ∞). The relevant
Hamiltonian now becomes

H = λ1

(
k2

x −
∂2

∂y2

)
1̂ + λ2

[(
k2

x +
∂2

∂y2

)
σ3 − 2ikx

∂

∂y
σ1

]
+ Λζ(y)σ2, (20)

simply replacing ky in Eq. (1), with the momentum operator
−i∂/∂y.

To analyze possible domain-wall states, we neglect the
quadratic derivative terms in the eigenvalue equation

Hψ = Eψ. (21)

The validity of the assumption is discussed immediately af-

ter the analytical derivation given below. Then, the equation
becomes

− 2iλ2kx
∂v
∂y
− iΛζ(y)v ≃ [E − (λ1 + λ2)k2

x]u, (22)

− 2iλ2kx
∂u
∂y
+ iΛζ(y)u ≃ [E − (λ1 − λ2)k2

x]v, (23)

for the two-component eigenvector ψ = (u, v)t. This equation
has a zero mode:

ψ =

(
0
1

)
e−

1
2λ2kx

∫ y
dy′Λζ (y′), (24)

with the spectrum E = (λ1 − λ2)k2
x if λ2kx > 0. Similarly, if

λ2kx < 0, the equation has another zero mode:

ψ =

(
1
0

)
e

1
2λ2kx

∫ y
dy′Λζ (y′), (25)

with the spectrum E = (λ1 + λ2)k2
x. These zero modes are

confined around the domain wall. The localization length L is
evaluated as L ≃ |2λ2kx/Λ±|.

To justify the assumption of neglecting the second deriva-
tive with respect to y, we must have∣∣∣∣∣∣∣± 1

2λ2kx

∂Λζ

∂y
+

(
Λζ

2λ2kx

)2
∣∣∣∣∣∣∣ ≪ k2

x. (26)

Therefore, a gradual change in Λζ(y) and a sufficiently large
kx were implicitly assumed in the above derivation. However,
dropping the second derivative does not change the asymp-
totic spectrum markedly, compared with the numerical diag-
onalization of Eq. (20) given in §4.2, but strongly affect the
dispersion curves at approximately kx = 0, which is excluded
from Eq. (26).

Although the two spectra are connected at kx = 0, they
should be regarded as two different modes for the following
reasons. First, the second derivative of E with respect to kx

is discontinuous at kx = 0, although we do not assume any
abrupt interface in the above argument. Second, the two field
profiles are completely different. One solution has solely the
upper component, but the other has solely the lower compo-
nent. Third, the approximation employed excludes the region
at approximately kx = 0. Thus, there should be two domain-
wall states having different spectra. The presence of the two
modes is consistent with the bulk-edge correspondence, be-
cause |C+ −C−| = |sgn(Λ+) − sgn(Λ−)| = 2.

It is remarkable that the two spectra coincide with the
asymptotic form of the bulk band edges. We should note that
a similar property is obtained for the domain-wall state of the
Dirac Hamiltonian:

H = v(kxσ1 + kyσ2) + Mσ3. (27)

The energy spectrum in the bulk is given by E =√
v2|k|2 + M2. On the other hand, the domain-wall state for

two domains with Dirac masses M of opposite signs has the
dispersion relation E = vkx, irrespective of the domain-wall
profile M(y). Again, the dispersion curve of the domain-wall
state is the same as the asymptotic behavior of the bulk band
edge.
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4. Numerical Results and Discussions

To verify the effective Hamiltonian and domain-wall states
discussed in the previous sections, we consider a PhC com-
posed of a periodic array of magneto-optical cylinders. The
cylindrical axis is taken to be parallel to the z-axis. To make
a domain wall, we apply a static antiparallel magnetic field
on it, resulting in two domains of the PhC having magneto-
optical couplings of the cylinders of opposite signs.

Depending on the lattice structure, the PhC can have C3v

(honeycomb lattice composed of two different types of cylin-
ders), C4v (square lattice), and C6v (triangular, honeycomb,
and kagome lattices with identical cylinders) point groups if
the external magnetic field is zero. All of these groups allow
for a double degeneracy at the Γ point. The band gap can be
introduced by applying a magnetic field through the magneto-
optical effect.

As shown in Appendix A2, such a system can be described
by the effective Hamiltonian Eq. (1). In this system gap pa-
rameters Λζ of the two domains have opposite signs, because
Λζ is proportional to the magneto-optical coupling. A domain
wall for photons that is described by Eq. (20) is thus formed
in the PhC.

4.1 Bulk
Hereafter, we will focus on a honeycomb lattice PhC with

the C3v point group. The PhC is supposed to have isolated
quadratic degeneracy at the Γ point under a vanishing ex-
ternal magnetic field. Such a band structure is obtained in
the transverse-magnetic (TM) polarization with an asymme-
try between the A and B sites. The photonic band structure is
obtained by solving the Maxwell equation for the TM polar-
ization:

− ∇ · [ξ(x)∇Ez(x)] − i{∇ × [ζ(x)∇Ez(x)]}z

=
ω2

c2 ϵz(x)Ez(x), (28)

where ξ and iζ are the diagonal and off-diagonal parts of the
inverse permeability, respectively,(

µxx µxy

µyx µyy

)−1

=

(
ξ iζ
−iζ ξ

)
, (29)

and ϵz is the z-component of the permittivity. They are peri-
odic in accordance with the honeycomb lattice. We employ
the plane-wave expansion method in the actual calculation of
the photonic band structure.17, 18

The photonic band structure without the magneto-optical
coupling ζ is shown in Fig. 1. We can find a frequency-
isolated Γ point of double degeneracy between the third and
fourth bands. We also find a doubly degenerate Γ point be-
tween the fifth and sixth bands. However, the latter point over-
laps in frequency with other k points in the first BZ. These
degeneracies are lifted by the magneto-optical coupling.

Figure 2 shows a close-up view of the third and fourth
bands before and after introducing the magneto-optical cou-
pling of the cylinders. The lift is well-described by the param-
eters of the effective Hamiltonian listed in Table I with

Λζ = λ
A
ζ ζA + λ

B
ζ ζB, (30)

Λkζ = λ
A
kζζA + λ

B
kζζB. (31)

Γ M K Γ M’ K’ Γ0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ω
a/

2π
c

Γ K
M

K’M’

Fig. 1. (Color online) Photonic band structure of the honeycomb-lattice
photonic crystal composed of circular cylinders. In the A sites of the honey-
comb lattice, the permittivity, (scalar) permeability, and radius of the cylin-
ders are given by ϵA = 14, µA = 1, and rA = 0.25a, respectively, where a is
the lattice constant. Those of the B site are ϵB = 10, µB = 1, and rB = 0.15a.
At the Γ point, an isolated frequency point of quadratic degeneracy is found
between the third and fourth bands.

0.0(Γ)0.1 0.1
ka/2π

0.432

0.434

0.436

0.438

0.440
ω

a/
2π

c

K<-- -->M’

Fig. 2. (Color online) Close-up view of the quadratic degeneracy point in-
dicated by the circle in Fig. 1, before (black sold line) and after (red dashed
line) the perturbation of the magneto-optical coupling. The coupling is given
by the off-diagonal component of the permeability tensor of the A and B
cylinders (µxy = −µyx = 0.01i). The diagonal components of the permeabil-
ity tensor are maintained at unity.

These parameters are obtained through Eqs. (12-16) and
(A·28-A·32), using the doubly degenerate eigenstate of the
unperturbed system.

Numerical calculation of the Chern number Cn of the n-th
Bloch band, which is defined by the BZ integral of the Berry
curvature19

Cn =

∫
BZ

d2k(∇ × Ank)z, (32)

Ank = i
∫

UC
d2xu∗nk(x)ϵz(x)∇kunk(x), (33)

results in C3 = 1 and C4 = −1. Here, unk is the envelop func-
tion of the z-component of the electric field in the n-th Bloch
state with the momentum k:

Ez(x) = unk(x)eik·x, (34)

which is solved using the Maxwell equation Eq. (28) in a first-
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Table I. Parameters of the effective quadratic Hamiltonian around the doubly degenerate point marked in Fig. 1.

λ1 λ2 λA
ζ λB

ζ λA
kζ λB

kζ
0.305 0.384 −0.0479 × (2π/a)2 −0.00145 × (2π/a)2 0.00432 × (2π/a) −0.0205 × (2π/a)

-0.1 0 0.1
k

x
a/2π

0.432

0.434

0.436

0.438

0.440

ω
a/

2π
c

Fig. 3. Dispersion relation of the domain-wall states found numerically in
terms of the effective Hamiltonian. The parameters of the effective Hamil-
tonian are taken from those in Table I. The gap parameter Λζ and the
anisotropy parameter Λkζ are given in Eqs. (35) and (36), respectively, with
ζA = ζB = −0.01 and W = 0.5a. The shaded region is the projection of the
eigenvalues of H + ∆H given in Eqs. (1) and (3). The angular frequency ω

is obtained using ω =
√
ω2

0 + c2E, where ω0a/2πc = 0.4346 is the eigenfre-
quency of the doubly degenerate mode concerned.

principles manner. The Chern numbers are in agreement with
those obtained using the effective theory: C = −sgn(Λζ) = −1
for the upper band and C = sgn(Λζ) = 1 for the lower band.

4.2 Domain-wall states in terms of effective theory
Next, we consider the domain-wall states in terms of the

effective Hamiltonian. Since the analytical results given in §3
are obtained by rough approximation, we present here a nu-
merical solution of the domain-wall states. Figure 3 shows
the dispersion relation of the domain-wall states derived by
discretizing Eq. (21), taking account of the additional term
Eq. (3). As the gap function Λζ(y), we assume the following
forms:

Λζ(y) = Λ+ tanh
( y
W

)
, (35)

Λkζ(y) = Λkζ+ tanh
( y
W

)
, (36)

Λ+ = λ
A
ζ ζA + λ

B
ζ ζB, (37)

Λkζ+ = λ
A
kζζA + λ

B
kζζB, (38)

where the center of the domain wall is taken to be y = 0 and
W is the domain-wall width. As predicted in §3, we obtain
two dispersion curves that terminate at different bands. One
curve lies almost at a positive k∥, while the other is at a neg-
ative k∥. The slopes of the two curves are different, but are
both negative. In addition, their asymptotic spectra coincide
with the bulk band edges. These features indicate that the two
curves are certainly chiral and those predicted with a rough
approximation in §3. Although not shown, we can find that

0.00

0.05

0.10

0.15

-20 -10 0 10 20
y/a

0.00

0.05

0.10

0.15

a|u(y)|
2

a|v(y)|
2

Fig. 4. (Color online) Field profiles of the domain-wall states at kxa/2π =
0.04 (upper panel) and −0.02 (lower panel) that are marked in Fig. 3. The
normalization of the field is taken to be

∫ ∞
−∞ dy(|u(y)|2 + |v(y)|2) = 1. The

center of the domain wall is at y = 0. The black solid and red dashed lines
stand for u(y) and v(y), respectively.

the spectra do not change markedly with decreasing domain-
wall width W. Thus, the domain-wall states have, to some ex-
tent, a topological nature as in the domain-wall state of the
Dirac Hamiltonian.

The field profiles of the domain-wall states at the marked
points in Fig. 3 are shown in Fig. 4. In our case, both λ1 and
λ2 are positive and satisfy λ1 < λ2. The results in §3 indicate
that the mode of positive kx has a vanishing u, the upper com-
ponent of a “pseudo-spin”. In agreement with this statement,
the mode has a rather dominant v, the lower component of
the pseudo-spin. Similarly, the mode of negative kx has u as
the dominant component. The localization length exhibits rea-
sonable agreement with rough estimate of L = |2λ2kx/Λ+| ≃
4.95a at kxa/2π = −0.02.

4.3 Domain wall in terms of first-principles calculation
Finally, we consider the domain-wall states of photons in

a first-principles calculation. The possible domain-wall states
in the PhC under study can be evaluated using the 2d version
of the photonic Korringa-Kohn-Rostoker method.20 Suppose
that the two domains have an infinite width parallel to the do-
main wall, but a finite thickness perpendicular to the domain
wall. The scattering (S) matrix is then defined for the finite-
thickness PhC. By energy conservation, the S-matrix is shown
to be unitarized. The S-matrix allows us to evaluate the opti-
cal density of states (DOS) ρ in the finite-thickness PhC via
the scattering phase shift δ:

ρ =
1
π

∂δ

∂ω
. (39)
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1
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32
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upper edge

domain
wall

Fig. 5. (Color online) Schematic illustration of the system under study. It
consists of two domains of a honeycomb-lattice photonic crystal. In one do-
main, the magneto-optical coupling is positive, while in the other domain it is
positive. The domain wall and edges are of the zigzag type of the honeycomb
lattice.

Here, the phase shift is obtained via the determinant of the
unitarized S-matrix S̃ :

δ =
1
2i

logdetS̃ , S̃ †S̃ = 1. (40)

We refer to Ref. 21 for the explicit construction of the unita-
rized S-matrix.

A domain-wall state is identified as a sharp Lorentzian peak
of the optical density of states at a fixed parallel momentum
k∥. The peak is found in the pseudo-gap of the bulk photonic
band structure of the two domains. The peak becomes sharper
with increasing layer thickness of the two domains. We should
note that this method also allows us to identify edge states
localized at either the lower or upper edge.22 In contrast to
the domain-wall states, the edge states are insensitive to the
thickness of the two domains.

By setting the two domains with magneto-optical couplings
of opposite signs, we consider the domain-wall states of pho-
tons in the honeycomb lattice PhC. The geometry assumed in
the numerical calculation is shown in Fig. 5.

Figure 6 shows the optical DOS in the finite-thickness PhC
at a fixed k∥. The DOS spectrum exhibits a sequence of peaks
in the bulk band region as well as an sharp and broad iso-
lated peaks in the gap region. The former peak in the gap is a
domain-wall state, while the latter peak is an edge state.

By scanning k∥, we can obtain the photonic band structure
of the domain-wall states and edge states. The numerical re-
sults of the first-principles calculation are shown in Fig. 7 for
a zigzag geometry of the domain wall and edges. Several dis-
persion curves are found in the gap region. Among them, two
curves (shown by solid line) are almost the same as those in
Fig. 3. Therefore, the agreement between the results of the
first-principles calculation and effective-theory calculation is
fairly good. The other curves shown by dashed and dash-
dotted lines are of the upper and lower edge states, respec-
tively. We should note that the two dash-dotted curves are
connected at the boundary of the surface BZ (kxa/2π = ±0.5).
Therefore, there is only one curve per edge that terminates
at different bulk bands. Thus, these curves of the edge states
have the same chirality, but their chirality is opposite to that of

0.43 0.432 0.434 0.436 0.438 0.44
ωa/2πc
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ρ 
2π

2 c/
a

>10
10

domain-wall state

edge state

gap

Fig. 6. (Color online) Optical density of states ρ in 32+32-layer-thick pho-
tonic crystal having the two domains. The momentum k∥ parallel to the do-
main wall as well as the lower and upper edges is taken to be 0.06×2π/a. Two
domains are characterized by magneto-optical couplings of the cylinders of
opposite signs: κA = κB = −0.01 (lower domain) and κA = κB = 0.01 (upper
domain). Each domain has a 32 layer thickness and zigzag edges, as shown
in Fig. 5.

-0.1 0 0.1
k

x
a/2π 

0.432
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0.436

0.438

0.440
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Fig. 7. (Color online) Photonic band structure of the domain-wall states
(black solid line) and edge states (dashed and dash-dotted lines) in terms
of the photonic Korringa-Kohn-Rostoker method. The red dashed and blue
dash-dotted lines indicate the upper and lower edge states, respectively. The
shaded region is the projection of the bulk band structures of the two domains.

the domain-wall states. This property is fully consistent with
the bulk-edge correspondence.

Concerning the armchair geometry of the domain wall, we
can find nearly the same dispersion curves of the domain-wall
states (not shown) as in the zigzag geometry. This property
can be drawn from the rather small anisotropy of the effective
Hamiltonian as well as the topological nature of the domain-
wall states. The upper and the lower edge states are shown to
be degenerate owing to the mirror symmetry with respect to
the domain wall22 (note that the mirror reflection inverts the
applied magnetic field). The resulting band structure of the
edge states is similar to that of the lower edge state (indicated
by dash-dotted line in Fig. 7).
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5. Conclusion

We have derived, with the aid of the group theory, an ef-
fective quadratic Hamiltonian for a doubly degenerate mode
at the BZ center in an unperturbed system. Its eigenstates can
have a nontrivial topology with the Chern number of ±1 if a
TRS-breaking perturbation is introduced. We have found that
two domain-wall states with the same chirality can emerge
at the interface between two domains whose low-energy ex-
citation is described by the quadratic Hamiltonian. To ob-
tain such domain-wall states, the gap parameters Λζ of the
two domains must have opposite signs. The two domain-wall
states have dispersion curves that coincide asymptotically to
the band edges of the projected band structure in the bulk.

Furthermore, we have presented an explicit example, the
honeycomb-lattice PhC, that is described by such an effec-
tive Hamiltonian for photons. By a first-principles calcula-
tion of photonic eigenstates, we have shown that two domain-
wall states with the same chirality emerge at the interface be-
tween two domains with opposite magneto-optical couplings.
A good agreement is obtained between the results of first-
principles calculation and calculation based on the effective
Hamiltonian.

Quite recently, similar domain-wall states with chirality
have been predicted in bilayer graphene.23 By applying an
interlayer electric field, a gap opens in the two valleys of K
and K’ (see the inset of Fig. 1 for the notation) around the BZ
corner. There, a quadratic dispersion similar to ours emerges,
having the Berry phase of 2π24 in each valley. As a result, the
domain wall formed by AB and BA Bernal stacking regions
has two domain-wall states per valley with the same chiral-
ity. Since the TRS is preserved in such a system, the Chern
numbers of the relevant bands are zero. As a result, the chi-
ralities of the domain-wall states are opposite between the K
and K’ valleys. In contrast, our domain-wall states originate
from the gapped quadratic dispersion around the BZ center. A
TRS-breaking perturbation is crucial in our case, resulting in
a nonzero Chern number.
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Appendix A: Two Physical Systems Having Effective
Quadratic Hamiltonians

In this appendix we provide further details on the effective
Hamiltonian and derive its symmetry constraints Eqs. (5-9)
for two kinds of physical systems.

A.1 Electron under periodic potential and periodic mag-
netic field

We first consider an electron under a periodic potential and
a periodic magnetic field. Its original Hamiltonian is given by
Eqs. (10) and (11). Let us start with the plane-wave expansion
form of the Schrödinger equation. Using the Bloch theorem,
the wave function of Bloch momentum k is written as

ψ(x) =
∑

g
ei(k+g)·xug, (A·1)

where g is a 2d reciprocal lattice vector. Similarly, the scalar

panded as

V(x) =
∑

g
eig·xVg,

A(x) =
∑

g
eig·x Ag,

Bz(x) =
∑

g
eig·xBg. (A·2)

Since, by definition, (∇ × A)z = Bz, the Fourier component
Ag of the vector potential is written as

Ag = i
(

gy

|g|2 ,−
gx

|g|2

)
Bg. (A·3)

We should note that the singularity at g = 0 is absent, because
we assume a vanishing magnetic flux per UC, namely, Bg=0 =

0. The Schrödinger equation now becomes

∑
g′

[
(H0)gg′ + (H′)gg′

]
ug′ = Eug, (A·4)

(H0)gg′ =
(ℏg)2

2m
δgg′ + Vg−g′ , (A·5)

(H′)gg′ =
1

2m

ℏ2(k2 + 2k · g)δgg′ + ℏe(2k + g + g′) · Ag−g′ + e2
∑
g′′

Ag−g′′ · Ag′′−g′

 , (A·6)

where H0 and H′ are the unperturbed and perturbed parts of
the original Hamiltonian, respectively.

As described in this paper, we assume the point group sym-
metry G that allows for a doubly degenerate representation in
the unperturbed system. Suppose that A is an element of G.
Then, we have V(Ax) = V(x) for the scalar potential. In terms

of the Fourier component, we have VAg = Vg for an arbitrary
g. As a result, the unperturbed eigenmode u(0p)

g (p = 1, 2) of
a doubly degenerate representation R of G satisfies∑

g′
(H0)gg′u

(0p)
g′ = E(0)

0 u(0p)
g , (A·7)

7
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u(0p)
A−1 g =

∑
q=1,2

u(0q)
g [DR(A)]qp, (A·8)

where DR(A) is a 2×2 unitary representation matrix of A. Sim-
ilarly, modes denoted by (n) other than the degenerate mode
concerned are classified according to the IRRs of G. Thus, we
have ∑

g′
(H0)gg′u

(n)
g′ = E(n)

0 u(n)
g , (A·9)

u(n)
A−1 g =

dimR′∑
n′=1

u(n′)
g [DR′ (A)]n′n, (A·10)

where R′ stands for the IRR to which the state (n) belongs.
The effective Hamiltonian for the degenerate mode under the
k·p perturbation and the perturbation of the periodic magnetic
field is given by Eq. (4).

For simplicity, from now on we will assume that the peri-
odic magnetic field itself obeys all the spatial symmetries of
the periodic potential. Thus, we have Bz(Ax) = Bz(x), namely,
BAg = Bg. We should note that this property does not imply
the conservation of all the spatial symmetries of the unper-
turbed system. Actually, the parity and TRS are broken by the
magnetic field because of the axial-vector nature of the mag-
netic field. In the simplest case, the periodic magnetic field
is given by the reciprocal-lattice components of the nearest-
neighbor (NN) sites from the origin as

Bg =

{
ζ for g ∈ NN
0 otherwise . (A·11)

In this case the degree of TRS breaking due to the periodic
magnetic field is parametrized by ζ.

In the effective Hamiltonian, the terms up to the second
order in k and ζ are given by

[H (k)]pq =
∑

g
(u(0p)

g )∗
ℏ2

m
k · gu(0q)

g , (A·12)

[H (ζ)]pq =
∑
gg′

(u(0p)
g )∗

iℏe
2m

[(g + g′) × (g − g′)]z

|g − g′|2 Bg−g′u
(0q)
g′ , (A·13)

[H (k2)]pq =
(ℏk)2

2m
δpq +

∑
n,0

[H (k)]pn[H (k)]nq

E(0)
0 − E(n)

0

, (A·14)

[H (ζ2)]pq = −
∑

gg′ g′′
(u(0p)

g )∗
e2

2m
(g − g′′) · (g′′ − g′)
|g − g′′|2|g′′ − g′|2 Bg−g′′Bg′′−g′u

(0q)
g′ +

∑
n,0

[H (ζ)]pn[H (ζ)]nq

E(0)
0 − E(n)

0

, (A·15)

[H (kζ)]pq =
∑
gg′

(u(0p)
g )∗

iℏe
2m

[k × (g − g′)]z

|g − g′|2 Bg−g′u
(0q)
g′ +

∑
n,0

[H (k)]pn[H (ζ)]nq + [H (ζ)]pn[H (k)]nq

E(0)
0 − E(n)

0

. (A·16)

By using Eq. (A·8), we readily obtain the symmetry constraint
of the first-order terms, namely, Eqs. (5) and (7). The second-
order terms involve the matrix elements relevant to the in-
termediate states. Such matrix elements also satisfy similar
relations to Eqs. (5) and (7):

[H (k)(k)]pn =
∑
p′n′

[D†R(A)]pp′ [H (k)(Ak)]p′n′[DR′ (A)]n′n,

(A·17)

[H (ζ)]pn = detA−1
∑
p′n′

[D†R(A)]pp′ [H (ζ)]p′n′[DR′ (A)]n′n.

(A·18)

With the aid of the unitarity of the representation matrix
DR′ (A), namely, DR′ (A)D†R′(A) = 1, we can obtain Eqs. (6),
(8), and (9).

A.2 Photon in photonic crystal with magneto-optical effect
Next, we consider photons (strictly speaking, classical light

wave) in a PhC composed of a 2d periodic array of circu-
lar cylinders with the magneto-optical effect. A static exter-
nal magnetic field is applied in the z-direction. We restrict

ourselves to the in-plane propagation of light, so that two
transverse-polarization degrees of light are decoupled into the
so-called transverse electric (TE) and TM.17 In the TE (TM)
polarization only the z-component of the magnetic (electric)
field is nonzero.17 We consider the TM polarization here. The
Maxwell equation for the system under consideration is given
by Eqs. (28) and (29).

Using the Bloch theorem, the z-component of the electric
field with the Bloch momentum k can be expanded as

Ez(x) =
∑

g
ei(k+g)·xug. (A·19)

Here, we assume the time-harmonic dependence of the an-
gular frequency ω, and thus the actual (real-value and time-
dependent) electric field is given by

Ez(x, t) = ℜ[Ez(x)e−iωt]. (A·20)

The permittivity ϵz(x) and the inverse permeability, diagonal
term ξ(x) and off-diagonal term ±iζ(x), in the PhC can be
expanded as

θ(x) =
∑

g
eig·xθg (θ = ϵz, ξ, ζ). (A·21)
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The imaginary part in the permeability represents a bro-
ken TRS in the Maxwell equation, and thus ζ(x), i.e., the
magneto-optical coupling, stands for the degree of TRS
breaking. The Maxwell equation is transformed into∑

g′
[(H0)gg′ + (H′)gg′ ]ug′ = E

∑
g′

Kgg′ug′ , E =
ω2

c2 ,

(A·22)

(H0)gg′ = ξg−g′ g · g′, Kgg′ = ϵzg−g′ , (A·23)

(H′)gg′ = ξg−g′
[
|k|2 + k · (g + g′)

]
+ iζg−g′

[−k × (g − g′) + g × g′
]
z . (A·24)

We assume piecewise constant permittivity and permeabil-
ity. Namely, we have constant θa and θb values inside and out-
side the cylinders, respectively, for θ = ξ, ζ, and ϵz. As a result,
the Fourier component θg is given by

θg = θbδg0 +
∑

a∈UC

(θa − θb)2 fa
J1(|g|ra)
|g|ra

e−ig·xa , (A·25)

where fa, ra, and xa are the filling ratio, radius, and 2d central
coordinate of the cylinder a, respectively, and J1 is the Bessel
function of the first order.

Since we are considering a PhC in which the magneto-
optical effect is limited in the cylinders, we put ζb =

0. Therefore, the broken TRS is parametrized by ζa, the
magneto-optical coupling of the cylinders. The magneto-
optical coupling is proportional to the spontaneous magneti-
zation through the Larmor precession.25 It is thus controllable
by applying an external magnetic field.

In what follows, we assume the point group symmetry G in
the unperturbed system described by H0 and K, and consider
the perturbation H′ that includes the k · p perturbation and the
TRS-breaking perturbation due to the magneto-optical cou-
pling ζg. Therefore, we have θAg = θg (A ∈ G) for θ = ξ, ζ,
and ϵz. Thus, the eigenmodes of the unperturbed system sat-
isfy ∑

g′
(H0)gg′u

(0p)
g′ = E(0)

0

∑
g′

Kgg′u
(0p)
g′ , (A·26)

∑
g′

(H0)gg′u
(n)
g′ = E(n)

0

∑
g′

Kgg′u
(n)
g′ , (A·27)

for a doubly degenerate mode and the other modes, respec-
tively. Starting with the doubly degenerate eigenmode of IRR
R, its effective Hamiltonian is given by Eq. (4). In the effec-
tive Hamiltonian, the terms up to the second order in k and ζ
are given by

H (k)
pq =

∑
gg′

(u(0p)
g )∗ξg−g′ k · (g + g′)u(0q)

g′ , (A·28)

H (ζ)
pq =

∑
gg′

(u(0p)
g )∗iζg−g′(g × g′)zu

(0q)
g′ , (A·29)

H (k2)
pq = |k|2

∑
gg′

(u(0p)
g )∗ξg−g′u

(0q)
g′ +

∑
n,0

[H (k)]pn[H (k)]nq

E(0)
0 − E(n)

0

, (A·30)

H (ζ2)
pq =

∑
n,0

[H (ζ)]pn[H (ζ)]nq

E(0)
0 − E(n)

0

, (A·31)

H (kζ)
pq =

∑
gg′

(u(0p)
g )∗iζg−g′ [k × (g′ − g)]zu

(0q)
g′ +

∑
n,0

[H (k)]pn[H (ζ)]nq + [H (ζ)]pn[H (k)]nq

E(0)
0 − E(n)

0

. (A·32)

Since Eqs. (A·8) and (A·10) can also be applied to the doubly
degenerate mode and the other modes, respectively, it is not
difficult to derive Eqs. (5)-(9).

Appendix B: Quadratic Hamiltonian from Symmetry
Constraints

Once we have the symmetry constraints Eqs. (5)-(9), we
can neglect the detailed expression of the effective Hamilto-
nian. The representation theory of the point group G enables
us to derive a possible form of the effective Hamiltonian. Lat-
tice systems having either G = C6v or C4v or C3v lead to our
quadratic effective Hamiltonian. A schematic illustration of
the geometry of the lattice systems is shown in Fig. B·1.

B.1 C6v

The C6v point group consists of {1, 2C6, 2C3,C2, 3σy, 3σx}
and allows for two 2d IRRs (E1 and E2) and four one-
dimensional (1d) IRRs (A1, A2, B1, and B2).26 Let us first con-
sider the E1 mode. Its unitary representation matrices showing
modulo unitary equivalence are given by

DE1 (C6) =

 1
2 −

√
3

2√
3

2
1
2

 , DE1 (σx) =
(
−1 0
0 1

)
,

DE1 (C3) =

 − 1
2 −

√
3

2√
3

2 − 1
2

 , DE1 (σy) =
(

1 0
0 −1

)
,

DE1 (C2) =
(
−1 0
0 −1

)
. (B·1)
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Fig. B·1. (Color online) Geometries of the unit cells in the lattice systems
having C6v, C4v, and C3v point groups.

The first-order term in k of the effective Hamiltonian is
generally written as

H (k) = kxCx + kyCy, (B·2)

where Cx(y) is a 2 × 2 hermite matrix. By applying A = C2,
namely, π rotation in Eq. (5), we immediately have Cx = Cy =

0. Therefore, H (k) = 0 is obtained. The second-order term in
k is written as

H (k2) = k2
xCxx + k2

yCyy + kxkyCxy, (B·3)

with the 2 × 2 hermite matrices Cxx, Cyy, and Cxy. Although a
possible form ofH (k2) is determined by applying various A(∈
C6v) in Eq. (6), it is more convenient to consider the matrix
elements relevant to the intermediate states. To this end, we
list up the representation matrices of the other IRRs of C6v.
Those of the E2 representation are given by

DE2 (C6) =

 − 1
2

√
3

2

−
√

3
2 − 1

2

 , DE2 (σx) =
(
−1 0
0 1

)
,

DE2 (C3) =

 − 1
2 −

√
3

2√
3

2 − 1
2

 , DE2 (σy) =
(
−1 0
0 1

)
,

DE2 (C2) =
(

1 0
0 1

)
. (B·4)

As for the 1d representations, the character table of C6v gives
the following:26

DA1 (A) = 1 (∀A ∈ C6v), (B·5)

DA2 (A) =
{

1 for A = C6,C3,C2
−1 for A = σx, σy

, (B·6)

DB1 (A) =
{

1 for A = C3, σy

−1 for A = C6,C2, σx
, (B·7)

DB2 (A) =
{

1 for A = C3, σx

−1 for A = C6,C2, σy
. (B·8)

By applying Eq. (A·17) for various representations of the in-

termediate states (n), we find

H (k)
E1A1
∝

(
kx

ky

)
, H (k)

E1A2
∝

(
−ky

kx

)
,

H (k)
E1B1
= H (k)

E1B2
= 0,

H (k)
E1E1
= 0, H (k)

E1E2
∝

(
ky kx

kx −ky

)
. (B·9)

The other matrix elements, such as H (k)
A1E1

, are simply given
by the hermite conjugation H (k)

A1E1
= (H (k)

E1A1
)†. Summing up

all the intermediate states in Eq. (A·14) or (A·30), classified
by the IRRs of C6v, we have

H (k2) = (c0 + cE2 )|k|21̂ + cA1

(
k2

x kxky

kxky k2
y

)
+ cA2

(
k2

y −kxky

−kxky k2
x

)
, (B·10)

where c0 is the contribution of the direct term that does not
involve the intermediate states, and cR′ (R′ = A1, A2, E2) is
the contributions of the intermediates states with IRR R′. The
above expression is cast into Eq. (13).

As for the first-order term in ζ, we first apply A = σx

(parity transformation with respect to x) to Eq. (7). It im-
mediately leads to the vanishment of the diagonal elements
of H (ζ). Then, by applying A = C6 (π/3 rotation), we find
H (ζ) = Λζσ2. By definition, the parameter Λζ depends lin-
early on Bg for electrons and on ζg for photons. In the former
case, we assume Eq. (A·11). Therefore, Λ is proportional to
ζ, the Fourier component of the periodic magnetic field. In
the latter case, we assume Eq. (A·25). Therefore, Λζ is linear
in ζa, the magneto-optical coupling of the cylinders, which is
proportional to the spontaneous magnetization. Thus, the gap
parameter Λζ of our quadratic Hamiltonian Eq. (1) is control-
lable by an external magnetic field in both systems.

The second-order term in ζ satisfies Eq. (8). By applying
A = σx, the off-diagonal terms of H (ζ2) vanish. Furthermore,
putting A = C6 results in H (ζ2) ∝ 1̂. The other A’s do not
restrict the above form. Therefore, this term only shifts the
eigenvalues, and can therefore be neglected. We also note that
this form is consistent with the contribution of the sum over
the intermediate states. Actually, by solving Eq. (A·18), we
obtain

H (ζ)
E1A1
= H (ζ)

E1A2
= H (ζ)

E1 B1
= H (ζ)

E1 B2
= 0,

H (ζ)
E1E1
∝

(
0 1
−1 0

)
, H (ζ)

E1E2
= 0. (B·11)

Summing up all the intermediate states, we again obtain a
constant shift.

Finally, the cross term between k and ζ is generally written
as

H (kζ) = kxDx + kyDy, (B·12)

where Dx(y) is a 2 × 2 matrix. By applying A = C2 in Eq. (9),
we obtain Dx = Dy = 0 and thus H (kζ) = 0, as in the case of
the first-order term in k. This result is again consistent with
the sum over the intermediate states. In summary, we obtain
Eq. (1) for an E1 degenerate mode.

A similar argument is available for an E2 degenerate mode.
The resulting form of the effective Hamiltonian is nothing but

10
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Eq. (1). The matrix elements relevant for showing the result
are summarized as follows:

H (k)
E2A1
= H (k)

E2A1
= 0,

H (k)
E2 B1
∝

(
−ky

kx

)
, H (k)

E2B2
∝

(
kx

kx

)
,

H (k)
E2E1
∝

(
ky kx

kx −ky

)
, H (k)

E2E2
= 0, (B·13)

H (ζ)
E2A1
= H (ζ)

E2A2
= H (ζ)

E2B1
= H (ζ)

E2B2
= 0,

H (ζ)
E2E1
= 0, H (ζ)

E2E2
∝

(
0 1
−1 0

)
. (B·14)

B.2 C4v

Next, we consider the C4v point group. The C4v point group
consists of {1, 2C4,C2, 2σx, 2σd}, and allows for one 2d IRR
(E) and four 1d IRRs (A1, A2, B1, and B2). Let us consider a
doubly degenerate E mode at the Γ point as the unperturbed
state. The unitary representation matrices of these IRRs are
given by

DE(C4) =
(

0 −1
1 0

)
, DE(σx) =

(
−1 0
0 1

)
,

DE(C2) =
(
−1 0
0 −1

)
, DE(σd) =

(
0 1
1 0

)
, (B·15)

DA1 (A) = 1 (∀A ∈ C4v), (B·16)

DA2 (A) =
{

1 for A = C4,C2
−1 for A = σx, σd

, (B·17)

DB1 (A) =
{

1 for A = C2, σx

−1 for A = C4, σd
, (B·18)

DB2 (A) =
{

1 for A = C2, σd

−1 for A = C4, σx
. (B·19)

Using a similar symmetry argument to the C6v case, relevant
matrix elements are written as

H (k)
EE = 0, H (k)

EA1
∝

(
kx

ky

)
, H (k)

EA2
∝

(
−ky

kx

)
,

H (k)
EB1
∝

(
kx

−ky

)
, H (k)

EB2
∝

(
ky

kx

)
, (B·20)

H (ζ)
EE ∝

(
0 1
−1 0

)
,

H (ζ)
EA1
= H (ζ)

EA2
= H (ζ)

EB1
= H (ζ)

EB2
= 0. (B·21)

From the above equations, we immediately find that the first-
order term in k and the cross term between k and ζ vanish. It
is also clear thatH (ζ) ∝ σ2 andH (ζ2) ∝ 1̂. As for the second-
order term in k, we have

H (k2) = c0|k|2

+ cA1

(
k2

x kxky

kxky k2
y

)
+ cA2

(
k2

y −kxky

−kxky k2
x

)
+ cB1

(
k2

x −kxky

−kxky k2
y

)
+ cB2

(
k2

y kxky

kxky k2
x

)
,

(B·22)

which is cast into Eq. (13).

B.3 C3v

Finally, let us consider the C3v point group. It consists of
{1, 2C3, 3σx} and allows one 2d IRR (E) and two 1d IRRs (A1
and A2). The unitary representation matrices of these IRRs are
given as follows:

DE(C3) =

 − 1
2 −

√
3

2√
3

2 − 1
2

 ,
DE(σx) =

(
−1 0
0 1

)
, (B·23)

DA1 (A) = 1 (∀A ∈ C3v), (B·24)

DA2 (A) =
{

1 for A = C3
−1 for A = σx

. (B·25)

Starting with a doubly degenerate E mode in the unper-
turbed system, we consider its effective Hamiltonian. Using
the symmetry constraints Eqs. (A·17) and (A·18), the relevant
matrix elements are shown to be

H (k)
EE ∝

(
ky kx

kx −ky

)
,

H (k)
EA1
∝

(
kx

ky

)
, H (k)

EA2
∝

(
ky

−kx

)
, (B·26)

H (ζ)
EE ∝

(
0 1
−1 0

)
, H (ζ)

EA1
= H (ζ)

EA2
= 0. (B·27)

One may wonder whether the linear term in k is available, be-
cause the matrix elementH (k)

EE is nonzero. However, it must be
zero if the two states of “bra” and “ket” in the matrix element
are identical.

To prove this property, we must consider the TRS of the
unperturbed system. By the complex conjugation of Eq. (A·7)
or (A·26), we can see that (u(0p)

−g )∗ satisfies the same equation
as u(0p)

g . Therefore, we have

(u(0p)
−g )∗ =

∑
q=1,2

u(0q)
g Uqp, (B·28)

for the unitary matrix U. The compatibility between Eqs.
(A·8) and (B·28) implies that

DR(A) = UD∗R(A)U†. (B·29)

In our formulation, DR(A) is taken to be real. Therefore, by
Schur’s lemma, such U is only a phase factor. On the other
hand, by complex conjugation of Eq. (A·12) or (A·28) with
the aid of Eq. (B·28), we find

(H (k)
pq )∗ = −[U†H (k)U]pq = −H (k)

pq . (B·30)

That is, the first-order term in k is pure imaginary. According
to the symmetry argument along with the hermiticity of the ef-
fective Hamiltonian,H (k)

pq must be written as c(kxσ1+ kyσ3)pq

with a real coefficient c. This is definitely real and is contra-
dictory to the purely imaginary H (k)

pq . To prevent this contra-
diction,H (k)

pq must be zero.
Using the matrix elements involving the intermediate

states, the second-order term in k becomes

H (k2)
E = (c0 + cE)|k|21̂ + cA1

(
k2

x kxky

kxky k2
y

)
11
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+ cA2

(
k2

y −kxky

−kxky k2
x

)
, (B·31)

which is cast into Eq. (13). The first- and second-order terms
in ζ are proportional to σ2 and 1̂, respectively. In contrast
to that in the C6v and C4v cases, the cross term between
k and ζ in the C3v case survives. It is generally written as
H (kζ) = kxCx + kyCy with the 2 × 2 hermite matrices Cx and
Cy. By applying A = σx in Eq. (9), the off-diagonal elements
of Cx and the diagonal elements of Cy vanish. Subsequently,
we apply A = C3, resulting in Eq. (16). These forms of the
effective Hamiltonian are consistent with the TRS, i.e., Eq.
(B·28), of the unperturbed system.

1) D. B. Kaplan: Phys. Lett. B 288 (1992) 342 .
2) S. Y. Zhou, G. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D. Lee,

F. Guinea, A. H. Castro Neto, and A. Lanzara: Nat. Mater. 6 (2007) 770.
3) R. Jackiw and C. Rebbi: Phys. Rev. D 13 (1976) 3398.
4) G. W. Semenoff: Phys. Rev. Lett. 53 (1984) 2449.
5) Y. Hatsugai: Phys. Rev. Lett. 71 (1993) 3697.
6) F. D. M. Haldane and S. Raghu: Phys. Rev. Lett. 100 (2008) 013904.
7) Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić: Phys. Rev.
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