

焦電材料を用いた赤外線検出素子

- ガラス再結晶化法によるPGSO厚膜単結晶 -

低エネルギーの輻射線である赤外線は,我々の日常生 活に不可欠のものである。これを検出する代表的な素子 は、InSb,Siなどの半導体でできており,応答感度は, 極めて高い。しかし,熱雑音に弱く,液体窒素以下の温 度に冷却する必要があるので,携帯に不向きである。そ れに対して,焦電型検出素子の方は,感度は幾分劣るが, 波長による感度差がない,検出可能波長領域が広い,常 温で動作するので,冷却する必要はなく,軽便である, また堅牢性良く,寿命が長いことなどの利点をもつこと から,研究開発が進められてきている。用途としては, 防犯器,ドア開閉センサー,非接触温度計,車両,航空 機の追突防止器,またパイロビジコンとして,人体表面 の温度分布測定,公害源監視装置など,きわめて広い分 野に渡っている。

焦電材料の一例として、 $Pb_5Ge_3O_{11}$ (PGOと略) および $Pb_5(Ge_{3-x}Si_x)O_{11}結晶(PGSOと略)を紹介しよう。$

PGO結晶は、常温で強誘電体であり空間群 $P_3(C'_3)$ に属し、斜方晶系であるが、177 ℃以上では、 $P_6(C'_3n)$ の六方晶系に転移し、常誘電体となる。PGOの融点は、 738 ℃と、低く、化学的に安定であり焦電係数も大きく、 誘電率は低いので、焦電材料として期待がもてる。 表1に、市販の焦電材料の性能比較を示した。ここでT GSはTriglicine sulfateの略、pは焦電係数(Coulomb/ cm°K、自発分極 P_s の温度係数 $p = \Delta P_s / \Delta T$)、 p / c_p' は低周波性能指数 (c_p' :体積比熱) また $p / \varepsilon c_p'$.は速 応性能指数である。赤外線のチョッピング周波数(f) が低いところで使用する場合は、 p / c_p' が大きいほど性 能が優れ、fが高い領域で使う場合、 $p / \varepsilon c_p'$ が高いほ ど良い。PGOおよびPGSOは、これらの指数が、市 販の材料に十分匹敵するか、指数によっては優れている。

表1 典型的な焦電型赤外線検出素子の性能比較

焦電材料	p [C/cm°K] × 10 ⁻⁸	p / c'_p $[A \cdot cm / W]$ $\times 10^{-8}$	$p/\epsilon c'_p$ [A·cm/W] × 10 ⁻¹⁰	R _v * [V/W]
$Pb_5Ge_3O_{11}$	2.0	0.98	2.2	2.0
$Pb_5Ge_2SiO_{11}$	6.5	3.2	0.94	3.4
TGS	4	1.6	4.6	3.2
LiTaO3	2.3	0.73	1.3	1.5

* R_v が d = 0.2 mm, A = 3.14 mm, R = 10 M Ω , η = 0.4, f = 14 Hz の場合

焦電検出素子を作る場合,熱の出入を良くするために, 材料を薄くする必要がある。(30 μm 程度)普通のやり 方では,大きな単結晶又は数mmの厚さの焼結体を,切断 し,研摩して厚膜化する。しかし一般にセラミックスは もろいので,この加工過程で,ひびが入ったり,割れた りする場合が多い。この技術は,細心の注意が必要なの で,多くの人手を要する。この煩わしさを避けるのは, "As-grown 又はAs-prepared の思想"が役に立つ。こ れは,結晶を作る場合,特定の用途まで考えに入れて, 所望の形状,大きさ,また希望する性能のものをいきな り作ってしまおうという考え方である。そうすれば,結 晶作製後,加工する必要はなく,省人化となる。

我々の新しいアイディアに基づく、PGOとPGSO の簡単な製法である"ガラス再結晶化法"を紹介しよう。 まず高純度原料を用いて次の固相反応(550℃~600℃、 10~120hr)によって、PGSOの多結晶粉末を作製す

(1)

3.

5PbO +(3−x)GeO₂ + xSiO₂ → Pb₅Ge_{3−x}Si_xO₁₁ (0 ≤ x≤1.5)

このPGSO結晶粉末を金ルツボ中で800~820℃,20 min 程度溶融し,水中に急冷又は,アルミ板上に流し出 し,アイロンで押して,空孔のないガラスとした。この ガラス片の数個を取って,金箔の上に載せ融点以上の温 度に上げて,再溶融する。わざわざガラスとする理由は, 組成を均一にするため,また多結晶粉末を使った場合よ りはるかに,再溶融物中の泡の残存量が少なくできるた めである。さてこの再溶融試料を,常温に戻すことなく, 600から720℃の温度とし,数時間程度保って,結晶成長 させる。その後,炉のスイッチを切って,自然放冷する と,厚さ50から300μm,また幅3から9mm角の六角板状 単結晶を得ることができる。これらは淡黄色で透明であ る。(図1)この結晶の薄さは,焦電素子を作る際に理想 的であり,また表面積も十分広い。

この結晶表面に垂直にX線を当て,背面ラウエ写真を とり解析すると,分極軸が表面と垂直をなしており,こ のことは,魚電素子の電極をつける際に非常に都合が良 く,最大の魚電圧を得ることができる。

一般のいわゆるガラスーセラミックスを作る場合には, 融体を常温まで急冷して,ガラス転移点以上で,結晶化 する。この種の熱処理法では,多核発生領域を二度通過

(a) Pb5Ge3011

このようにして出来た結晶の電気的性質はどの程度良 質のものだろうか。

分極軸方向の誘電率(ε), 誘電損失(D), 自発分極 (P_s), 抗電界(E_c)の温度変化を測定した。その一部 の常温でのデータを表 2 に示した。(ここで T_c は常誘電

(b) $Pb_5Ge_{2.5}Si_{0.5}O_{1.1}$

(c) Pb₅Ge₂SiO₁₁

(d) Pb₅Ge_{1.5}Si_{1.5}O₁₁

組 成	合成法	T _c (C)	ε	$\Delta P_{s}/\Delta T \times 10^{-8}$
$Pb_5Ge_3O_{11}$	C S 法 G R 法	177 178	41 44	0.95 2.0
Pb ₅ Ge ₂ SiO ₁₁	C S 法 G R 法	60 45	150 340	6.5

表2 ガラス再結晶化法(GR法)とチョクラルスキー
 法(CS法)の性能比較

 $\epsilon \ge \Delta P_s / \Delta T (C/cm^{\circ}K)$ は常温での値

相ご強誘電相のキューリー温度である。)チョクルスキー 法で作製した大型単結晶の特性に近い値が得られ、"ガラ ス再結晶化法"により、電気的性質の十分良い厚膜単結 晶を作り得ることが分った。

焦電圧の測定は、次のような順序で行う。得られた厚 膜単結晶を切削や研摩することなく、As-grown の表面 に Cr-Au を蒸着して、一方の電極とし、基盤である金箔 をもう一方の電極として取出し、ICソケットの上にの せる。さらに、Cr-Au 膜の上に、赤外線の吸収を良くす るために黒色塗料を塗る。 次に200 μmの厚さの試料に 600V くらいの直流電界を一昼夜かけてドメインの向きを 表面と垂直にする。この操作をポーリングと呼んでいる。 こうしてしまえば、電界を取去っても、単分域状態が

半永久的に保持される。

試料の焦電圧はChynowethが開発した動的測定法に従った。

焦電型赤外線検出素子の性能を定量的に示す式をPutley が提案しており、これはかなりの精度で、現実の測定値 と一致している。感度 R_v (Responsivity:[V/W]) は次 のように表わされる。

 $R_{v} = \eta (\omega p A R / G) (1 + \omega^{2} \tau_{E}^{2})^{-1/2} (1 + \omega^{2} \tau_{T}^{2})^{-1/2} \cdots (1 + \omega^{2} \tau_{T}^{2})^{-1/2}$

ここで、 R_v は、光の投射全エネルギーあたりの魚電圧、 η : 電極表面の放射率(完全黒体であれば、 $\eta = 1$)、 $\omega[1/s] \cdot f_{\exists\gamma} - \sigma$ 角周波数($\omega = 2\pi f, f[H_2]$:周波 数)、 p[C/m°K]:魚電係数、A[m]:電極面積、R[Q]: 試料と外部の並列合成抵抗、G[W/°K]:熱伝導(G=K·d, K[W/m°K]:熱伝導率)、 $\tau_E[s]$:電気的時定数($\tau_E =$ CR、C[F]:試料と外部の並列合成キャパシタンス)、 $\tau_T[s]$:熱的時定数($\tau_T = H/G$ 、H[J/°K]、H: 熱容 量、H=c_DAd、c_D[J/m^{*}K]:体積比熱である。

これは、かなり複雑な式であるが、図 2 のように R_v は、 ω に比例する部分 (f<1 / τ_T)、 無関係な領域、 ω に反比例する部分 (f >1 / τ_F)からなる。

この図 2 で, PGSO(*x*=1.0) がPGO(*x*=0)に比 して R_v が大きい理由は,主として焦電係数が前者の方

図2 赤外線に対する応答感度の周波数依存性

が大きいためと考えられる。

それでは、性能の良い魚電材料とは、どういうもので あろうか。(1)吸湿性が少なく、化学的に安定である こと、(2)式(イ)で明らかなように、魚電係数が大き いこと、(3)体積比熱が小さく、入射光の熱エネルギ ーによる温度変化が大きいこと。すなわち熱の出入の速 度が大きいと高い周波数のチョッピングに追従できる、 (4)誘電率(ϵ)が低いこと、(5)キューリー温度 (T_c)がある程度(約150 \mathbb{C})高いこと、すなわち、あ まり T_c が低いと、単分域化したものが、熱振動によっ て再び、多分域化して性能が下ってしまう。さらに T_c 近くでは、魚電係数と ϵ が急激に変化するので、ちょっ とした温度変化でも感度が急変することになる。

我々の開発した,ガラス再結晶化法によるPGSO厚 膜単結晶の性能を市販の焦電材料と比較してみよう。

(表1) PGOとPGSO(x=1.0)の R_v は、TGSと LiTaO₃に十分匹敵することが分る。TGSは吸湿性が強 く、不安定な物質であり、LiTaO₃は薄片に作製しにく いので、我々の方法が優れている。

まとめとして、ガラス再結晶化法は、(1) 簡単な厚膜 単結晶の作製法であり、大がかりな合成装置を必要とし ない。(2) 結晶の大きさは、焦電素子用として十分大き なものができる。(3) 厚さは十分薄く、ガラス球の仕込 み量によって厚さを制御でき、薄片化のための、切断、 研摩という煩雑な工程は不要であり、As-grown 結晶の まま、素子として使用できる。(4) Pb₅Ge_{3-x}Si_xO₁₁に おいて、 $0 \le x \le 1.5$ の任意の組成の単結晶を合成でき、 しかも分極軸は表面と垂直となっている等、焦電素子を 作製する場合、多くの利点を有する。

前述したように, 焦電型素子の性能は, 熱的また電気 的, 形状的な多数の因子によって左右される。また, 多 方面の応用分野が広がっている。したがって使用目的に 応じて, 様々の要求にこたえなければならない。そのた め今後共, 焦電素子となり得る材料の特性を一つ一つ明 らかにしていく必要があると思われる。

モリブデン酸ビスマスの相転移

はじめに

モリブデン酸ビスマス:Bi2MoO6(すなわち,Bi2O3 と MoO₃ のモル比が1:1)の相関係は、これまで幾人 かの研究者によって検討されてきた。しかしながら、転 移温度、相の数とそれら相互の安定関係および融点と溶 融特性(一致溶融か不一致溶融か)の各々について予盾 があり、正確な相関係はいまだに決まっていない。確実 なことは、Bi2MoO6には常温で二種の同質異像が存在す ることである。通常これらはγ型(または Koechlinite 型)と γ ′型の名称で区別されている(一般に多型の区別 には α, β, γ, …… を使用するが, Bi₂O₃-MoO₃系 においては、Bi2Mo3O12をa相、Bi2Mo2O9をB相そし て Bi₂MoO₆をγ相と呼ぶ)。これら両者の結晶学的デー タを表1に掲げる。 γ 型は $(Bi_2O_2)^{2+}(MoO_4)^{2-}$ で表 現されるように、Bi₂O₂層とMoO₄層とが交互に繰り返 される層状構造であり、その単位胞原子配置の概念図を 図1に示す。類似の層構造を有する複合ビスマス酸化物 群は、これまでに約60種知られているが、天然に見い出 されるものは γ 型Bi₂MoO₆が唯一のものであり, 鉱物名 Koechlinite として知られている。 人工的には水溶液か らの共沈により粉末が得られており、不飽和炭化水素 (オレフィン類)の酸化触媒として注目されている。他 方, γ[′]型は, Bi₂O₃とMoO₃の粉末をモル比で1:1に 混合したものを700~800℃程度の温度で固相反応させる ことにより容易に得られる。また単結晶もフラックス法 により簡単に育成される。

表1

Bi2MoO6	晶系	空間群	格子定数(Å)	Z	密度(g/cm)
γ型	斜方	P21ab	a=5.506, b=5.487,	4	8.26
			c = 16.226		
γ′型	単斜	P21/c	a = 17.251, b = 22.422, c = 5.851, β = 89° 30.2'	16	7 .495

これら両相とも見掛け上,常温で安定であるので,どちらが低温安定相であるかについては,異論がありこれまでに確定していない。更に y型には固相転移の存在が確認されているが, y'型は固相転移をしないと報告されている。

水溶液からの共沈による $\gamma 型 Bi_2 MoO_6$ 試料作製法は, 繁雑な操作と相当な時間を要すること,更には純度の点 で問題があり,均一で多量の γ 型試料を供するためには 不適であった。 $Bi_2 MoO_6$ の相関係について報告数が余り 多くないこと,およびそれらの実験結果の不一致は試料 調整の繁雑さと純度に原因があるものと推定される。こ れらの問題点を解決するため,ここでは $Bi_2O_3 \ge MoO_3$ のモル比1:1の混合粉末を低温(520~590°)で固 相反応させることにより,均一な黄緑色の $\gamma 型 Bi_2 MoO_6$ を多量に得られることを見いだした。かくして得られた γ 型試料を出発物質として熱分析により $Bi_2 MoO_6$ の固相 転移を検討した。また $\gamma 型 \ge \gamma' 型 Bi_2 MoO_6 \ge の相互の$ 熟的安定性については水熱条件下での等温平衡実験より

図1 γ-Bi₂MoO₆の結晶構造

確定した。

示差熱分析による検討

得られた示差熱分析(DTA)曲線を図2に示す。昇 温速度は5℃/minである。602℃に見られる小さな吸熱 ピークは可逆的転移である。すなわち,この転移を経過 した直後に試料を冷却すると、対応する発熱ピークが観 察される。しかしながら,661℃に出現する2番目のピー クは図に示されるように、非可逆転移をする。最初のピ ークから得られる転移温度は昇温速度に依存することな く常に 604 ± 3 ℃の範囲内で見いだされるが、2番目の 転移温度は昇温速度に大きく依存する、すなわち 2.5~ 20℃/minの昇温速度に対応して、ほぼ630 ~ 670 ℃ の 温度領域に吸熱ピークが相当のバラツキを以って出現す る。この原因は二つの吸熱ピーク間に存在する中間相 γ'' 型Bi₂MoO₆が準安定相であることによるものと推定され る。2番目の非可逆的転移を経過した試料は薄黄色の γ' 型Bi₂MoO₆である。

差動熱量計による転移熱の測定結果は、最初のピーク に対応するものが約0.lkcal/molであり、2番目のもの が約3.2kcal/molであった。 これまでに報告された Bi₂MoO₆の相転移についての示差熱分析結果は図2の非 可逆転移に関するもののみであり、最初の可逆的転移の 記載は見いだされない。なぜなら、前述したような試料 の純度の問題に加えて、このピークの転移熱が非常に小 さいため検出されなかったのである。

示差熱膨張

図3に示された示差熱膨張曲線もDTA曲線と同様に 二つの転移点に対応して、二つの膨張異常が認められる が、それらの転移温度は示差熱分析における結果より低 い。転移に際しての体積変化は、一般に前駆現象として 現われるという事実から、これらの温度差は説明される。 示差熱分析の場合と同様に、最初に現われる僅かな膨張 は可逆的であり、この転移直後に試料を冷却すると、そ れは収縮することが認められる。2番目の急激な膨張は 非可逆であり体積増加は室温に冷却後も保持される。す なわち転移後の ゲ型の方が ア型より空隙の多い構造とな

図3 Bi₂MoO₆の熱膨張曲線

っており,その結果は表1に掲げられた密度の値に反映 されている。

熱的安定性

604 ℃以下で γ 型と γ 型のいずれが安定であるかは, これら γ 型と γ 型との混合試料を 404 および 500 ℃のそ れぞれの一定温度下で水熱処理することにより確立され た。その結果,いずれも生成物として γ 型のみが確認さ れ, γ 型は消失していた。したがって, γ 型が低温安定 であり, γ 型が高温安定相であると結論できる。

中間相 y^{//} 型Bi₂MoO₆

示差熱分析の結果を再確認すると、γ型は昇温過程に おいて604 + 3℃で可逆的にγ″型へ転移し、 更にγ″型 は昇温速度に依存して約 630~ 670℃の温度領域で γ″ へ非可逆的に転移する。しかしながらγ″型が安定と思わ れる温度領域(604℃より高く、非可逆転移を生ずる温 度より低い領域)で試料を長時間熱処理すると、すべて √型へ転移してしまうことが認められた。また、熱処理 温度と時間を加減すると、γ型とγ型の混合試料が得ら れる。この現象は γ″型が604℃以上で徐々に γ′型へ転移 してしまうことに原因がある。前述したように γ″型か らγ 型への転移は、体積増加を伴うため、この緩漫な現 象は熱膨張によって検出が可能である。図4は608℃にお ける試料の膨張の時間変化曲線である。初期に見られる 収縮は γ″相の焼結効果によるものである。 γ″型から γ′ 型への転移の割合は,処理温度と時間に依存する。また, 転移しなかった γ″型は冷却すると再び γ型へ戻るため, 処理条件により γ と γ 型との混合試料が得られることに なる。このように、中間相である γ″型は一方では緩漫な 転移により、他方では昇温速度に依存した突然の転移に より γ 型へ非可逆的に変化することから, 準安定相であ ると結論できる。したがって純粋な y型Bi2MoO6を得る

図4 時間の関数としてのBi2MoO6の熱膨張曲線

ためには、生成温度を 604 ± 3 ℃より低く保たなければ ならない。粉末固相反応の場合は、反応速度と炉の温度 ゆらぎを考慮して約520~590℃の温度範囲で加熱するこ とが望ましい。単結晶育成は水熱法が最適であり、実際 に水熱法により得られた $\gamma 型Bi_2MoO_6$ と比較のためにフ ラックス法によって育成された $\gamma' 型Bi_2MoO_6$ の単結晶 を図5に示す。(最小目盛は1 nmである)。前者が濃緑板 状であるのに対し後者は淡黄柱状である。

以上の Bi_2MoO_6 の相転移をまとめると下記のようになる。

 γ 型(低温安定相) $(\overline{((\overline{ (((\overline{ (\overline{ ((\overline{ (\overline{ ((\overline{ 1})}})})})}) }) }) }) })}}}})})}$

準安定相から高温安定相への転移は604±3℃以上で徐々 に始まる。高温安定相はそのまま室温へクエンチされる。

図 5 Bi₂MoO₆の単結晶 (左) γ′-Bi₂MoO₆ (右) γ-Bi₂MoO₆

熱電子放射用硼化ランタン電極の製造法

発明者 大島忠平,河合七雄
公告 昭53-14418
登録 第936555号,昭和53年12月26日

概要

本発明は,熱電子放射用硼化ランタン電極の製造法に 関するものである。硼化ランタンは,熱電子放射用電極 材料として知られている。

従来, 硼化ランタン電極として使用を試みられている 硼化ランタンの焼結体は, 硬くて脆いために加工性が悪 く, 目的にかなった電極を作ることが困難であった。 これに対し本発明は、レニウム又はタンタル金属電極 素材を加熱しながら、電極表面上に硼化ランタンを真空 蒸着して、電極表面上に硼化レニウム又は硼化タンタル の下層と硼化ランタンの上層とを形成させ、熱電子放射 用硼化ランタン電極を得るものである。

このようにして得た電極は、加工性の良いレニウムあ るいはタンタル金属を用いて電極骨組を作るために、目 的にかなった形状の電極を作製し得ることができ、かつ 熱電子放射特性も、硼化ランタン焼結体と同じである等 優れた特性を持つ。

硼化ランタンと黒鉛との熔接体の製法

発明者 坂内英典,田中高穂,内田健治 公 告 昭52-49008

登 録 第930935号,昭和53年11月7日

概要

この発明は、硼化ランタンと黒鉛との熔接材の製法に 関するものである。硼化ランタンは、熱電子放射用電極 材料として知られている。

従来, 硼化ランタン電極は, 硼化ランタンとモリブデン, タングステン等の支持金属とを, 熔接して用いていた。しかし, この方法では, 金属中に硼素が拡散し, 支

持金属の劣化を招き、電極全体の寿命を短くする欠点が あった。

これに対し、本発明は、支持体とする黒鉛を2000℃以 上(黒鉛の融点以下)に加熱し、硼化ランタン結晶又は 焼結体と接触させ、接触面を2000℃以上に加熱した状態 から除冷することにより、硼化ランタンと黒鉛支持体と の熔接を可能にしたものである。

このようにして得た熔接体は,硼素が黒鉛支持体中へ 拡散することもないため,熔接体全体の寿命が長くでき, 電子顕微鏡,電子ビーム加工装置等の熱電子放射電極と して幅広く活用できる。

一外部発表一

※投稿

論文番号	題目		発	表	者	掲 載 誌 等
751	Chemical, Thermal and Elastic Properties of Lo Expansion Copper Aluminosilicate	ow	牧島 境野	売男・当 照雄	宇津木 岡	Yogyo-Kyokai-Shi 87 10 543 (1979)
752	Phase Transformation of Iron Vanadium Sulfides High Temperatures	at	和田	弘昭		Bull. Chem. Soc. Japan 52 10 2918 (1979)
753	Non-Integral Phase in Tridymite		貫 井 中沢	昭彦・⊔ 弘基	山本 昭二	AIP Conf. Proc. No. 53 327 (1979)
754	Wave Distribution Vacancies in the NC-type Pyrrhotite, $Fe_{1-x}S$		中沢森本	弘基・山 信男	山本昭二	AIP Conf. Proc. No. 53 358 (1979)
755	Ca ₃ (PO ₄) ₂ -H ₂ O-F ⁻ 系におけるアパタイトの生成と 素の挙動	フッ	門間	英毅・」	上野 精-	- Gypsum & Lime 163 226 (1979
756	Versatile Tipe Miniature Diamond Anvil High- Pressure Cell		山岡 下村	信夫・褚 理・中	畐長 (戶沢 弘寿	h Rev. Sci. Instrum. 50 9 1163 (1979)
757	A General Treatment of Modulated Structures		山本 床次	昭二・中 正安	中沢 弘寿	AIP Conf. Proc. No.53 84 (1979)
758	Preparation of TiC_x Single Crystal with Homogeneous Compositions		矢島 坂内	文和・H 英典・ネ	日中 高和 可合 七如	J. Cryst. Growth 47 4 493 (1979)
759	Structure Analysis of Na2TigO19 by 1MV High- Resolution Electron Microscopy	-	板東 関川	義雄・洞 喜三	度辺 递	E Acta Cryst. B 35 1541 (1979
760	錫の反応性スパッタリング過程		畑野 内田	東一・」 健治	上村揚一郎	3 真空 22 10 341 (1979)
761	T-O Bond Lengths in C2/c Clinopyroxenes and Role of Enpty Low Energy Level 3d Orbital in Site Cations	the M1	大橋	晴夫		J. Japan. Assoc. Min. Petr. Econ Geol. 74 413 (1979)
762	Grain Growth in Zinc Oxide		守吉 丸山	佑介・注 修・自	也上 隆周 白崎 信-	 Proc. of International Symposium on Factors in Dinsification and Sintering of Oxide and Non-oxide Ceramics, 1978
763	Experimental Studies of Electrical Conduction Mechanism of H_2 -Reduced BaTiO ₃		月岡 宮沢 児島	正至・日 靖人・柔 弘直・2	日中 順三 な 泰道 工原 新	Solid State Commun. 32 3 223 (1979)
764	Dieupopium(Ⅲ) Germanate Oxide		加藤 木村	克夫・陽 茂行	划田 正才	f Acta Cryst. B35 2201 (1979)
765	Absorption of Hydrogen in 'ReO3'		堀内 山本	繁雄・君 昭二	きょうしょう 目塚 しょうしょう ないしょう しょうしょう しょうしん しょうしょう しょうしん しょうしょう しょう しょう しょう しょう しょう しょう しょう しょう	Nature 279 5710 226 (1979)
766	Evaluation of Impurities in Reactive Sputtered 7 Film	ſin	畑野 内田	東一・」 健治	上村揚一郎	J. Phys. D: Appl. Phys. 12 L 141 (1979)
767	熱雑音温度計ー高圧力下の測温		田村	脩蔵		日本物理学会誌 34 12 1052 (1979)
768	Fabrication of High Strength β -Sialon by React Sintering	tion	三友 猪股	護・倉 吉三	會元 信行	f J. Mater. Sci. 14 2309 (1979)
769	Contributions to the Magnetisation in Paramagnet V_5S_8	tic	J.B.F 川田 佐伯	'orsyth·I 功·野 昌宣	P.J.Brow 盱崎 浩市	n J. Phys. C: Solid State Phys. J 12 4261 (1979)
770	Crystal Structure of Si $_3N_4 \cdot Y_2O_3$ Examined by 1 MV High-Resolution Electron Microscpe	a	堀内	繁雄・日	三友 割	§ J. Mater. Sci. 14 2543 (1979)

※ 口 頭

題	日	発	表	者	学・協	会誌	発表日
マグネティックポーラロンにおける電子 (Ⅱ)	ー格子相互作用の効果	梅原	雅捷		日本物理学会		10月2日
異方性導体β-M _x V2O5のNMR Ⅱ		丸山 雪野	和之・長沢 健	博	日本物理学会		10月2日
SORを用いた角度分解型光電子分光法		青野	正和		日本物理学会		10月2日
LaB6表面局在電子状態のUPS		西谷 田中 岩崎	龍介・青野 高穂・河合 裕・中村	· 正和 七雄 勝吾	日本物理学会		10月2日
ReO3の表面電子状態の理論		塚田 南 7	捷・里子 不二雄	· 允敏	日本物理学会		10月2日
GaSe の発光のサブナノ領域における時	間分解スペクトル	南 ジ 櫛田	不二雄・江島 孝司	皓	日本物理学会		10月2日
AIN フォトルミネスセンス励起スペク	ト <i>ル</i>	佐藤	忠夫・山下	博志	応用物理学会		10月2日

P ⁴⁺ :SiO ₂ (α-石英)のEPR-温度依存性-	内田 吉茂・磯谷 順一 John A. Weil	日本物理学会	10月3日
RbI 高圧相転移の方位関係	岡井 敏	日本物理学会	10月3日
HexBN:C系の励起緩和過程	江良 皓・南 不二雄	日本物理学会	10月4日
V2H 中の陽電子消滅	赤羽 隆史·千葉 利信 高野 繁男·赤羽 良一 津田 惟雄	日本物理学会	10月4日
希土類水素化物 CeH _x の赤外反射	藤森 淳・石井 紀彦 津田 惟雄	日本物理学会	10月4日
繊維状hBNの生成と形態	石井 敏彦・佐藤 忠夫 関川 喜三	人工鉱物討論会	10月4日
ダイヤモンド上に気相から析出した炭素の評価	加茂 睦和・佐藤洋一郎 瀬高 信雄	人工鉱物討論会	10月4日
ダイヤモンド単結晶の育成	神田 久生・赤石 実 瀬高 信雄・大沢 俊一 山岡 信夫・福長 脩	人工鉱物討論会	10月4日
ビスマス層状化合物の組成と安定性に関する弾性体モデルによ る検討	菊池 武	人工鉱物討論会	10月4日
新化合物 BiLaWO6の育成と結晶構造	渡辺 昭輝・大坂 俊明 井上善三郎	人工鉱物討論会	10月4日
1100℃における GeO2-Fe2O3-FeO 系相平衡	高山 英治・君塚 昇 加藤 克夫	人工鉱物討論会	10月4日
新化合物 Al ₄ Si ₂ C ₅ についての X 線結晶学的考察	井上善三郎・猪股 吉三 田中 英彦・川端 治雄	人工鉱物討論会	10月5日
水熱合成法による γ-Bi2MoO6の合成と単結晶の育成	小玉 博志・泉 富士夫	人工鉱物討論会	10月5日
Bi ₂ MoO ₆ の固相転移とその機構	渡辺 昭輝・小玉 博志	人工鉱物討論会	10月5日
FZ法による均一組成のZrC _x 単結晶の育成	大谷 茂樹・田中 高穂	人工鉱物討論会	10月5日
酸化物単結晶のFΖ育成における固液界面	北村 健二・木村 健二	人工鉱物討論会	10月5日
V ₅ S ₈ の磁気構造Ⅱ	船橋 達・野崎 浩司 川田 功	日本物理学会	10月5日
TiB2のドハース・ファンアルフェン効果(Ⅱ)	石沢 芳夫・田中 高穂	日本物理学会	10月5日
アナターゼールチル相転移に影響を及ぼす諸要因	藤木 良規 大塚 芳郎 三橋 武文	日本鉱物学会(三鉱学会)	10月7日

- ★ M E M O 🛧 -

長田国務大臣,当研究所を視察

1月17日,長田国務大臣は筑波研究学園都市視察の一 環として,当研究所に来所され,田中所長の案内で超高 圧電子顕微鏡,高圧力実験装置などを視察された。

所長から概要説明を受けられる長田国務大臣

研究会

結晶成長研究会(第19回),昭和54年12月10日,11日, 「結晶のモロフォロジーについて」,及び「合成ダイヤモンド の成長機構について」の議題で開催され討議が行われた。 結合状態研究会(第18回),昭和55年1月10日,「YFe₂O₄, Bi₂ReO₆の物性」についての議題で開催され討議が行わ れた。

来 訪

昭和54年12月11日,西ドイツ科学技術情報センター ボン支局長 J. Grewen 博士が来所し所内を見学した。

最近の出版物

無機材質研究所研究論文集 第6集

発 行 日	
編集・充仃	科子拉帕丁 燕 微 相 頁 研 先 所 NATIONAL INSTITUTE FOR RESEARCHES IN INOROGANIC MATERIALS
	〒 305 茨城県新治郡桜村並木1丁目1番
	電 話 0298-51-3351