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Preface

The CCT diagrams for welding produced at the National Research Institute for Metals over a long
period of time since the opening of the Institute were summarized. Most of them have been published in
the Reports of the National Research Institute for Metals and Transactions of the National Research
Institute for Metals. These diagrams, which represent about 200 kinds of steel, are produced under the
same measurement conditions and the same conception, judging the continuous cooling transformation
behavior of steel. Each of the CCT diagrams contains an image representing the dependence of the
hardness and the ratio of transformation products consisting of a microstructure on the cooling time.
The collection and edition of these diagrams, which were performed for the construction of a database
accessible through the Internet, were part of a database construction project of the Japan Science and
Technology Corporation (JST). The CCT database now in progress is accessible at WWW
(http://inaba.nrim.go.jp/Weld/).  Access to this database will allow a more effective utilization of these
CCT diagrams.

Numerous colleagues contributed valuable suggestions that were incorporated in this report, and we
are extremely grateful to them. We should particularly like to thank Dr. Satoru Ohno, Dr. Masahiro Uda,
and Dr. Akira Okada for their extensive review and discussion of the manuscript. Finally, we should
like to thank Ms. Misako Utsumi, Miss Kazuyo Miyamoto, and Ms. Hisayo Ando for their assistance
during the writing and preparation of manuscript and our wives Yukiko Fujita and the late Noriko
Kasugai for their patience and understanding.

Mitsutane FUJITA
Takayoshi KASUGAI

November 1999
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Forward
Michio INAGAKI

Ex-manager of Welding Research Department of NRIM
President of The Japan Welding Technology Center
Principal of The Japan Welding Structure College

It is my great pleasure to announce that the "CCT diagram of various kinds of steel products for welding”"
which is part of a database construction project of the Japan Science and Technology Corporation , is ready for
publication on the Internet to be widely utilized. The production of CCT diagrams for welding for structural
steel, high-strength steel, and low-temperature steel was commenced by Inagaki in the Welding/Fabrication
Laboratory under the guidance of Prof. S. Haruji or Sekiguchi of Nagoya University under the auspices of a
special research grant of the Ministry of Education in approximately 1955, At that time, a period of rapid
economic growth was just starting in Japan, and a large number of steel products for welding were consumed in
the shipbuilding, automobile, and construction industries.  The welding technology was developed mainly in
the welding of structural steel. ~ The development of high-strength steel and low-temperature steel was also
actively sought.

General-purpose CCT diagrams for heat treatment were produced by Dr. A. Rose et al. at the Max Plank
Institute in Germany at that time.  After receiving the specifications for an apparatus for the production of
CCT diagrams for heat treatment from Dr. Rose, we started researching the development of an apparatus for the
production of a CCT diagram for welding.  We have developed the production method of a so-called CCT
diagram for welding which reproduced stably the rapidly heating/cooling weld-heat cycle of a weld-heat
affected zone similar to a fusion zone during welding on a small specimen.  The most difficult points at that
time were selecting the heat source and stably setting a maximum heating terhperature of 1350 C. A
cylindrical resistance-heating furnace employed at Nagoya University for budgetary reasons gave insufficient
heating velocity.

After being transferred to the National Research Institute for Metals, I developed and commercialized the
Synthetic Weld Thermal Cycle Apparatus for Transformation Measurement by High-frequency Induction
Heating for the first time in the world.  This apparatus produced numbers of CCT diagrams for welding on
various kinds of high-strength steel and low-temperature steel which were being developed by steel
manufacturers in Japan at that time.  Thus, the guidelines for development and the bases of weldability
evaluation of these steel products have been established.

Concerning the production of CCT diagrams for welding, attention needs to be paid to how to determine the
initiation and termination of the transformation of various kinds of microstructures. The transformation ,
initiation point (1% initiation state) was determined from the heat-expansion curve, the thermal analysis curve,
and microstructure observations after quenching the speciméns taken out of different cooling states of the weld
thermal cycle. The reason that the transformation initiation of a microstructure was defined as a 1% initiation
state was that obtaining the strict point of transformation initiation with near-zero percent was too difficult.

[ have presented a description of the  characteristic of the weld thermal cycle and the CCT diagram for
welding and its application at the 18th and 19th Nishiyama Memorial Technological Conferences (sponsored
by the Japan Iron and Steel Association) "Change in Material Properties during Welding."  The development

and commercialization of the Synthetic Weld Thermal Cycle Apparatus for Transformation Measurement and



the Weld Thermal Restraint Simulator increased exports of the apparatus to China and many countries in
Europe and America as well as sales in Japan. The apparatus and the simulator have been actively utilized. *

The "CCT Diagram of Structural Steel for Welding” was published in March 1997 by the Committee for the
Technological Investigation of Basic Characteristics of Practically Used Structural Steel in the Production
Technology Department of the Japan Iron and Steel Association. It is to be noticed that the CCT diagrams for
welding summarized in this publication were not always based on the same reproduced weld-heat cycle, and the
classification evaluation of mixed microstructures caused by continuous cooling is not always done under the
same conception. »

[ hope that these results are utilized in the research project "STX-21*  Structural Materials Xs for 21st

Century,” which is now advanced by the "Frontier Structural Materials Research Center” of the National
Research Institute for Metals.

*  M.nagaki & HMinematsu :“Application of Simulation Test Technology for Evaluating Weldability of
Structural Steels”(June 1984).



CCT Diagram for Welding
Takayoshi KASUGALI

National Research Institute for Metals

1.Introduction

It is well known that the microstructural change of asteel at the equilibrium state can be investigated by a
Fe-C equilibrium diagram. In practice, however, the thermal cycle of a steel during heat treatment or welding
is heated and cooled faster than that at the equilibrium state. Therefore, it is necessary to know how the
equilibrium or non-equilibrium microstructures appear in a heating and cooling process. The continuous
cooling transformation diagram (CCT diagram) and the isothermal transformation diagram (TTT diagram or S
curve) are the non-equilibrium diagrams which solve these problems.  These non-equilibrium diagrams show
how the transformation temperature shifts from the equilibrium state based on an A; temperature at which the
ferrite transformation begins to take place or in what range of temperature and time the non-equilibrium
microstructures appear when the cooling is done under non-equilibrium.

There are two types of CCT diagrams. One is for welding, and the other one is for heat treatment. The CCT
diagram for welding is also divided into two, i.e., a SH-CCT diagram for a weld heat-affected zone (HAZ) and a
SW-CCT diagram for weld metal. Most of the published SH-CCT diagrams for welding (hereinafter called
CCT diagrams for welding) focus on the weld-heat affected zone near the fusion line, which is important for
evaluating the weldability of the arc welding of the steels, such as weld-cold cracking and notch toughness.
CCT diagrams with a maximum heating temperature of about 1120K~ 1470K (ca. 850~1200C),
corresponding to the HAZ far from the fusion line, have not been studied in depth. ~ SH-CCT diagrams for
welding of about 200 kinds for low-carbon and low-alloyed steels stored in this data book have been made by
the National Research Institute for Metals of the Science and Technology Agency. Most of them have been
made at the Institute by produced under the same measurement conditions and the same conception, judging the
continuous cooling transformation behavior of steel.  They are the CCT diagrams for welding corresponding
to the HAZ near the fusion line with a maximum heating temperature of 1623K (1350C).

2. CCT Diagram for Welding

The reference temperatures of the CCT diagram for welding, i.e,, A| and A; temperatures, were measured in
high vacuum with a heating and cooling velocity of 3 K/min.  If the temperature differences between Ac; and
Ar; or between Ac; and Ar; were below 50K, the average of Ac, and Ar, was defined as the A, temperature, and
the average of Ac; and Ar, was defined as the A, temperature, respectively.  If the difference was over 50K, both
the Ac, temperature and the Ac; temperature were used.  If Ar, and Ar; were extraordinarily lower than Ac, and
Acs, respectively, it was assumed that the equilibrium transformation did not proceed during cooling.

The specimen was rapidly heated up to 1623K (1350°C) and cooled down immediately without being held
at that temperature, according to the synthetic weld-thermal cycle. The dimensions of the specimen were ¢
4.5mm X 15mmor ¢3mm X 12mm.

The production of earlier CCT diagrams was done using a tublar-Elema furnace.”

Later on, a program-
controlled high-frequency induction heating furnace was used, as for the simulation of weld-thermal cycles.”
Transformation temperatures during the cooling were measured by the thermal expansion method for slow
cooling or by the thermal analysis method for fast cooling.

The classification of microstructures was done according to the classification method defined by the
Welding Metallurgy Subcommittee of the Japan Welding Society.? The area percentage of microstructures
was measured by the linear-analysis method. The hardness of specimens after cooling was measured using a
Vicker‘s hardness meter (load 10 kgf) at three points to get the mean value. The CCT diagram for welding was
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made by drawing the cooling curve for the temperatures below A; or Acg temperatures of a simulated weld-
thermal cycle.  The ordinate of the diagram stands for temperature, and the abscissa stands for the logarithm
oftime.  “A” inthe CCT diagram is the austenite region, “F”, “P", “Zw” ,and “M” inthe CCT
diagram are the ferrite, pearlite, zwischenstufen-gefuge (intermediate structure), and martensite transformation
region, respectively. The solid line in the transformation curves means that the transformation was clearly
recognized, while the broken line means that the transformation did not clearly appear. In particular, the Zw
transformation followed by the ferrite transformation progresses continuously from the ferrite transformation,
preventing the appearance of a distinct knee on the thermal expansion curve. The majority of CCT diagrams
for welding stored in this database indicate the transformation initiation lines but not the end of each
transformation.  The reason that the end of the transformation lines was not put on the CCT diagram is that it
was difficult to obtain them from the thermal expansion curve and the thermal analysis curve.

In the low-carbon low-alloyed steel, the addition of alloying elements including carbon lowers the A3
temperature. The microstructures in the HAZ of steels are roughly decided during the cooling time from
1073K(800°C) to 773K(500°C) in the weld-thermal cycle. Critical cooling times (SH-CCT characteristics)
are shown in the CCT diagram for welding, and these values suggest the dependency of microstructures on the
cooling time from Az or Acs temperature to 773K(500°C).  Among these characteristics, the Cz* is a critical
cooling time for Zw precipitation, Cf’ is a critical cooling time for ferrite precipitation, and Cp* is a critical
cooling time for pearlite precipitation. Ce’ is also a critical cooling time over which martensite
transformation does not take place. ~ All of these critical cooling times are expressed in the cooling time from
Az or Acy to 773K (500°C) and are closely related to the weldability of the HAZ described later.

3. Utilization of Diagram for Welding

The CCT diagram plays an important role in the prediction of microstructures of the HAZ near the fusion
line. In particular, the CCT diagram for welding on the maximum heating temperature 1623K(1350°C) is
closely related to the prediction of the weld-cold cracking sensitivity and the toughness among the weldability
of the arc welding of steels. Weld-cold cracking is caused by the interaction between the microstructure,
hydrogen, and restraint stress. Among these three factors causing weld-cold cracking, the microstructure can
be predicted from the CCT diagram for welding, and it is thus possible to predict the weld-cold cracking of
steels.  The order of microstructure having higher sensitivity of the weld-cold cracking is martensite > bainite

> pearlite > ferrite.?

The prevention of weld-cold cracking from the viewpoint of the microstructure in the
HAZ near the fusion line is suggested to be necessary to select the cooling time or welding condition so as to
avoid martensite transformation and precipitate Zw and ferrite by the weld-thermal cycle. The microstructure
affects the toughness to a great extent as well. The toughness of the steel comes from the microstructure of
ferrite, pearlite, and martensite, but the toughness is also determined by the coexistence of various kinds of
microstructures. The coexistence of different microstructures decreases the unit crack-pass against the fracture,
improving the toughness.”  In conclusion, weld-cold cracking and the toughness of the HAZ near the fusion
line are highly dependent on the microstructure. The mixture of martensite, Zw, and ferrite seems to be the

most suitable for the microstructure of the HAZ in the vicinity of the fusion line.?”

4. Application of CCT Diagram for Welding

When using a CCT diagram for welding, the following applications have to be avoided:
(1)Application of a CCT diagram for welding to steel having different compositions.
(2) Application of an SW-CCT diagram for welding to an SH-CCT diagram for welding and vice versa.
(3) Application of a CCT diagram for welding of the HAZ near the fusion line to other parts of the HAZ and vice
versa.
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(4) Application of a CCT diagram for heat treatment to a CCT diagram for welding and vice versa.

(1): Tt is well known that CCT diagrams with different compositions of steels are not the same. To what
extent does the steel in question have to be similar to the reference steel in compositions so that it can be
considered to be similar? For example, the CCT diagram for welding of a certain type of steel SM490
cannot be used for all of steel SM490 defined by the JIS standard as having a common CCT diagram for
welding.  The JIS standard does not define the microstructure of the weld heat-affected zone, but it defines
the steel which satisfies a certain performance of its base metal and weld zone. Compositionally, the
standard defines the upper limit of contents of C, Si, Mn, P,and S. No other alloying elements than these
are defined by the JIS standard.  Accordingly, there are various steels with different compositions in steel
SM50.  Some of them contain C, Si, Mn, P, and S at their maximum content near the upper limit, while
others contain them in a much lower level. Some kinds of steel SM490 contain alloying elements other
than C, Si, Mn, P, and S.  The microstructures of the weld heat-affected zone are considerably different from
one another.  Very few papers have reported the limit of deviation of alloying elements from the given steel
for adopting the CCT diagram for welding which comes from the given steel. The authors have already
revealed the limit of alloying element deviation® for steel. ~ Selecting the steel within this limit regardless
of strength level enables the adoption of the proper CCT diagram.

(2): There are two ways to prepare an SW-CCT diagram for welding.  One way is to prepare a CCT diagram by
applying a complete thermal cycle to specimens from melting/solidification to room temperature.” The
other way is to prepare a CCT diagram from an SH-CCT diagram for welding using specimens taken out of
weld metal !”  In the weld metal in the arc welding, larger amounts of inclusions are dispersed than in the
base metal. In particular, the dispersed inclusions in the weld metal with large weld-heat input welding are
utilized as the ferrite precipitation nucleus in order to keep the notch toughness and tensile strength.'”
Even if the composition of the weld metal is the same as that of the base metal, the transformation behavior
during cooling is assumed to be considerably different from that of the HAZ.

(3): Even in the same steel, there is asignificant difference between the HAZ near the base metal and the HAZ
near the fusion line in the grain size of austenite and the distribution of alloying elements including carbon.
The difference certainly affects the transformation behavior during cooling. Mutual application, therefore,
must be avoided.

(4): The CCT diagram for heat treatment is different from the CCT diagram for welding in their utilization
purpose. According to the CCT diagram for heat treatment, a specimen of a hypouetectoid steel is kept at a
temperature of A; + 50K for a certain period of time and continuously cooled down. Inthe CCT diagram
for welding, a specimen is rapidly heated to the maximum heating temperature and cooled down according
to the synthetic weld-thermal cycle without being held at that maximum temperature. The two CCT
diagrams have to be used differently, as mentioned in (3).
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Application of Simulation Test Technology for Evaluating

Weldability of Structural Steels*
Michio INAGAKI** and Hiroyuki MINEMATSU***

Abstract

The authors have developed the Apparatus for Measuring Transformation in Synthetic Weld Thermal
Cycles and Thermal Restraint Simulator. Using the former apparatus, a number of Continuous Cooling
Transformation Diagrams in Synthetic Weld Heat-affected Zone (SH-CCT diagrams) for various structural
steels were prepared, the transformation behaviour was analyzed and its relation with notch toughness, etc. was
examined. Using the Thermal Restraint Simulator, quantitative analyses and evaluation of weld cold cracking
and reheat cracking, etc. were made.

1. Introduction

For manufacture, heat treatment, processing and use of materials, test technologies of simulating thermal,
dynamic and environmental conditions are very important for development of materials, improvement of
procedures and analyses and evaluation of usage performance. Generally the welding phenomena include a
number of factors and it is necessary to analyze these factors, evaluate weldability and select proper welding
conditions. For these purposes the authors have developed the Apparatus for Measuring Transformation in
Synthetic Weld Thermal Cycles in 1961 and Thermal Restraint Simulator in 1969. The scope of application of
simulation test technologies offered by these equipments is very wide. Here, they give an account of the
transformation behaviour of the synthetic weld heat-affected zone of structural steels and the relation between
their microstructure and notch toughness, examined using these equipments. The present state in Japan of the
analyses of these factors and the method of evaluating weld cold cracking and reheat cracking is also
described.

2. Apparatus for Measuring Transformation in Synthetic Weld Thermal Cycles and Thermal Restraint
Simulator

The authors have developed an apparatus to simulate weld thermal cycle in specimen by high frequency
induction heating control and examine the transformation during the heating or cooling process. Using this
apparatus, it is possible to measure the transformation in continuous cooling by simulating the weld thermal
cycle near the weld bond and draw the continuous cooling transformation diagram of synthetic weld heat-
affected zone (abbreviated as SH-CCT diagram)."? The apparatus also enables making continuous heating
transformation diagram and isothermal diagram. With some invent of this apparatus the continuous cooling
transformation diagram of synthetic weld metals (abbreviated as SW-CCT diagram) in the cooling process after
solidification of molten metal can also be prepared.”

Ablock diagram of the apparatus for preparing the SH-CCT diagram is shown in Fig 1. In the programmable
pattern generator of this diagram, the temperature and time program signals of weld thermal cycle are set
digitally. These program signals are compared with the thermocou ple signal from specimen, and the high

*  Apart of this paper is submitted to the International Conference on Quality and Reliability in Welding,

held in Hangzhou, China, Sept. 1984
**  President, The Japan Welding Technology Center, Dr. Eng.
*#* Former Director, Fuji Electronic Industrial Co., Ltd.
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frequency generator is controlled through the temperature controller; and in this manner the specimen is
heated and cooled according to the preset conditions by the high frequency heating coil (inductor). Since
the inductor is designed as a combination of inductor and gas-cooling nozzles, the specimen is cooled by
injecting the cooling gas on it through the nozzles at the time of cooling. Transformation is detected by
measuring the expansion or contraction of specimen by means of a differential transformer (L. V. D.T.)
which is attached to the specimen through a ceramic jig . Especially in rapid cooling, transformation can be
detected by the method of thermal analysis as well. The ceramic jig has been designed taking various
factors, such as the thermocouple for measuring and controlling temperature, measurement of expansion
and contraction and gas cooling effect of specimen, etc. into consideration and it is so constructed as to
permit easy mounting and dismounting of specimen. To improve temperature control response, the high
frequency generator employs the system of duty conversion by pulse modulation in order to follow quick
control signals.

Programmable
Pattern Generator

2-Pen »
':Reco@i____] Inductor & Gas Nozzle

Comparator

Temperature
Controller

High Frequency
Generator

Magnetic Valve for Gas

——p———
Specimen i

Dilation ] P i

Detector o

Servo Valve for Gas Control

Fig.1 Block diagram of the apparatus for measuring transformation in synthetic weld thermal cycle.

The weld thermal restraint sirnulator is used for simulating the weld thermal cycle and the restraint stress or
strain during this process and experimentally analyzing the welding phenomenon. The phenomena of thermal
embrittlement, weld cracking, damage caused by diffusion of hydrogen and reheat cracking, etc. can be clarified
with this apparatus.?

As shown in the block diagram of Fig.2, this apparatus consists of a thermal system, a mechanical system
and a control system for automatically controlling these systems.

Specimen is placed in a vacuum chamber or a chamber of adjustable atmosphere and is easily and accurately
mournted in upper and lower grips by means of the cap nuts. The lower grip is directly connected to a hydraulic
actuator. A digital electronic circuit incorporating a microprocessor is employed in the programmable pattern
generator and the thermal system and mechanical system are controlled by closed loop control system (feedback
control).

The thermal system is controlled by a combination of a high frequency induction heating method and a gas
cooling method. The preset temperature program signal is compared with the signal received from the
thermocouple welded to the specimen, the deviation signal produced after the comparision is fed to the high
frequency generator through the temperature controller to control the high frequency output current fed to the
heating coil. For cooling, acombined cooling control is used in which a cooling gas is injected on the specimen,
when necessary, through the gas nozzles (built in the heating coil ) together with the high frequency output.

The mechanical system is controlled by electric and hydraulic type control methods. The stress and strain
applied to the specimen are detected by means of load cell directly connected to the upper grip and the
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Fig.2 Block diagram of the weld thermal restraint simulator

differential transformer (L. V. D. T.) directly connected to the actuator of the lower side; these detected signals
are compared with the preset stress and strain program signals and the deviation signal produced after the
comparision is used to operate the servo valve through the servo controller. The servo valve controls the
hydraulic pressure fed from the hydraulic generator, which drives the actuator.

In order to accurately simulate various welding phenomena, it is necessary to apply required stress and strain
to the specimen during the thermal cycle. For this purpose, the apparatus is equipped with a zerofollow up
memory circuit for exchanging the control configuration, which permits exchange of ( strain control ) <
(stress control ) without time lag at any arbitrary point during the cycle. By using the zone melting process
employing a heating coil of special shape, it is also possible to simulate the melting-solidification thermal
cycle of a weld metal, conduct hot tensile test after solidification and evaluate hot cracking susceptibility of
weld metal with this apparatus.”

3. SH-CCT Diagram and Microstructures of Weld HAZ

To investigate the transformation behaviour of the weld HAZ by simulating the thermal cycle near weld
bond, the SH-CCT diagram for welding is used. Fig.3 shows an example of the SH-CCT diagram for welding
of aHT50 or HT60 class steel. This diagram was achieved by simulating a weld thermal cycle of maximum
heating temperature of 1350°C in thespecimen. Since the transformation microstructure is generally
determined by the cooling time from A; (or 800°C) to 500°C, the cooling curve from A; is shown using
logarithmic scale along the axis of abscissa. In the diagram, the regions A, F, P, B(Zw) and M represent the
transformat ion areas of austenite, ferrite, pearlite, bainite or intermediate microstructure and martensite
respectively. The number given under each transformation region shows the microstructure ratio and the
number at the end of each cooling curve represents the Vickers* hardness (Hv10) of specimen after cooling. The

cooling curves shown inbroken linerepresent critical cooling curves at theboundary where specific
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Fig.3 SH-CCT diagram for welding of a HT50 or HT60 class steel(Maximum heating temperature 1350°C
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Fig.4 SH-CCT diagram for welding of a HT80 class steel (Maximum heating temperature 1350°C)

microstructure begins to appear. The A; 500°C  cooling time in these curves is called critical cooling time. If a
cooling time occurs later than the critical cooling time Cz’ , it means the appearance of bainite in martensite; and
if a cooling time occurs later than the critical cooling time Cf*, ferrite appears. If a cooling time occurs later than

Cp’, pearlite appears; and if a cooling time occurs later than Ce‘, the microstructure consists of only two
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Fig.5 Classification of microstructure morphologies of weld HAZ for low C low alloyed steels and unification
of their terminologies

microstructures { ferrite + pearlite). These critical cooling times Cz’, Cf*, Cp’, and Ce* are called a SHCCT
characteristic value.” In the diagram, cooling curves for typical welding conditions in various welding
processes are also shown.” Fig.4 shows the SH-CCT diagram prepared in the same manner fora HT80 class

steel.?

The microstructure of weld HAZ is largely affected by chemical composition of the steel and weld thermal
cycle. The microstructure of HAZ is produced by the continuous cooling transformation and in many cases
several microstructures exist in combinations in aHAZ . Moreover, the morphologies of the ferrite, pearlite,
bainite and martensite thus produced change according to the temperature and time in the cooling process. No
definite approach has yet been made for unification of classification of microstructure morphologies and their
terminologies. The matter is under consideration by the W Commission IX, etc. and in Japan also a Working
Group for investigating about unification of microstructure terminologies of weld has been established with
the cooperation of the Welding Metallurgy Committee of the Japan Welding Society and Commission No. 9 of
the Japan Institute of Welding (JIW). This working Group has proposed classification of microstructure
morphologies and their terminologies for weld HAZ microstructure considering unification of their
terminologies, which can be applied to various welding processes of low-carbon, low-alloyed steels. This



classification of microstructure morphologies was mainly based on optical microscope, but for fine structure
the results obtained by using an electron microscope based on the replica method and the scanning type electron
microscope, which is considered as an extension of the optical microscope, were also considered. Fig .5 shows
the classification of microstructure morphologies of weld HAZ for low-C low-alloyed steels and unification of
their terminologies.?¥

Type F-1is ferrite allotriomorph which grows long in the form of a pancake precipitated along the austenite
grainboundary, type F-II is proeutectoid ferrite or grainboundary polygonal ferrite which grows into a massive
form assuming roundness, and type F-III is a ferrite sideplate which grows in the form of spearhead from
austenite grainboundary into the grains and tends to become bainitic ferrite when many elements are included in
comparatively large quantities. Type F-IV is intragranular rodlike or acicular ferrite which precipitates in
rodlike or acicular form in austenite grains. Type F-V is intragranular fine “rained ferrite which precipitates in
small massive form in austenite grains.

According to the results obtained by using electron microscope, ferrite side plate and bainitic ferrite can be
distinguished; but it seems from the results obtained by using an optical microscope in the case of a continuous
cooling transformation, such as in a weld HAZ, that the distinction is difficult. For this reason the bainitic
ferrite has been included in the ferrite in the classification of microstructure morphologies mainly based on
optical microscope presented in this paper.

Regarding the morphologies of pearlite, type P-I is the lamellar pearlite in which the ferrite and cementite
take lamellar form in rather good order, and it is easy to precipitate when the cooling time is long. It precipitates
among various types of comparatively coarse ferrite morphologies. Type P-II is the degenerate peatlite in which
the cementite in pearlite gets cut into small pieces or becomes granular. This cementite becomes smaller as the
the cooling time decreases and is easy to precipitate in weld HAZ of steels having comparatively less quantities
of alloying elements like mild steel. In some cases, degenerate pearlite precipitates in quantities considerably
larger than those estimated from the C content of the steel, and the C content of this pearlite shifts from
eutectoid composition (0. 80% C) to low C side. Type P-III is very fine pearlite colonies which precipitate
between the narrow ferrite sideplate and narrow intragranular rodlike or acicular ferrite and is called fine colony
pearlite. The cementite in this pearlite has a morphology like round threads. The fine colony pearlite is easy to
precipitate in a cooling time shorter than the cooling times for the lamellar pearlite or degenerate pearlite.

Regarding the morphologies of bainite, type B-I is the upper bainite in which the cementite precipitates
between the ferrite laths. Type B-1I is the lower bainite in which the cementite precipitates at the ferrite lath
boundaries and in the laths. In a weld HAZ, the upper bainite is easier to precipitate on the higher temperature
and longer time side compared to the lower bainite but it is difficult to clearly distinguish them on the SH-CCT
diagram for welding. However, in low-carbon low-alloyed steels, the limit of formation temperature regions of
upper bainite and lower bainite tends to be about 450°C.

Regarding morphologies of martensite, type M-I is the lath martensite which is formed when the cooling
time is short. Type M-I I is an insular martensite which forms between the bainitic ferrite and intragranular
rodlike ferrite or acicular ferrite; and as it is a high C martensite mixed with retained austenite, it is called M-A
constituent.

In normal welding conditions of various arc welding processes for low-carbon low-alloyed steels, in the
continuous cooling process of the weld thermal cycle, the ferrites of various morphologies precipitate at first
and especially from type F-III ferrite to upper bainite, lower bainite and M-A constituent are easier to precipitate.
In a cooling process of a middle rate, when type F-I1I ferrite grows, carbon is discharged to untransformed 7
and C concentration of 7 increases. The distribution of C concentration at this time shows a peak on the 7
sideofthe /7 boundary of type F-III ferrite and is said to reach aC content of about 0.6%. Upper bainite
mostly appears in the intermediate temperature region of 500to 450°C and in this transformation the ferrite
amount further increases, C concentration of the untransformed 7 of @/ 7 boundary also further increases and
cementite partly precipitates. On the other hand, carbon gradually diffuses into 7. Next, the lower bainite
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appears on the lower temperature side near about 450°C to Ms point; and because the diffusion of carbon is
slow although the driving force of transformation increases and the transformation rate becomes large, carbon
accumulates on the 7 side of the tip of ferrite lath growth in the lower bainite transformation. Finally, the
untransformed 7 reaches below the Ms point and M-A constituent is formed.

For formation of M-A constituent, temperature and time conditions are necessary under which alloys of
somekinds and quantities be added and the bainite transformation start temperature Bs should drop below
about 500°C and untransformed 7 should exist in stable state below the Ms point. Therefore, the M-A
constituent is mostly formed when many alloying elements are contained in comparatively large quantities and
the type -1 ferrite and upper bainite exist in large quantity in the middle cooling time of the weld thermal
cycle. In a detailed example of 170 sec cooling time in synthetic weld thermal cycle for a HT80 class steel, the
amount of formation of M-A constituent was approximately 15%, of which the amount of 7 was
approximately 8%.'"

4. Notch Toughness of Weld HAZ

The weld bond in an arc welded joint is the boundary where the base metal undergoes fusion and
silidification, but there is not definite boundary line in the bond. Generally, in the weld metal side, the base
metal melts but does not mix with the deposited metal of welding material, that is, an unmixed zone exists and
in the base metal side the grain size increases and a partial melt zone exists at the grain boundaries. In the
beginning of solidification of molten weld metal, there is a trend of columnar grain growth along the same
crystal axis as the coarsed grains in the base metal side or under the solidification surface, that is, there is a trend
of epitaxial growth. It has been found from the results of investigation of microstructure near weld bond of
various kinds of matererials that in each case expitaxial growth occurs from the coarsed grain of weld HAZ,
unmelted in a base metal, in widths similar to those of coarsed grains. So there is a transition region of the order
of 20 to 100 pm, in which the chemical composition and microstructures change abruptly in a weld bond.

The factors of material quality for notch toughness near weld bond are (1) chemical composition and
microstructures, (2) grain size and facet unit, (3) dissolved atoms and precipitates, nonmetallic inclusions,
dislocations, etc. and (4) effect of weld metal. Moreover, from the viewpoint of welding procedure conditions,
single layer weld or multilayer weld as well as the weld heat input and the effects of preheating and postheating,
etc. can be considered.

The notch toughness of HAZ near the bond of a welded joint is said to decrease due to the upper bainite
microstructure and coarseness of austenite grains. As a measure to improve the material quality, a mixed
microstructure of {ferrite+pearlite) should be made by decreasing the hardenability in structural steels of HT60
or lower class; and for steels of HT70 or higher class, on the contrary, the composition design and the control of
weld thermal cycle should be made by increasing the hardenability to obtain a mixed microstructure of (low-
carbon martensite+lower bainite).

The brittle fracture of a welded joint tends to initiate near the bond without regard to the class of steel.
However, for steels of HT60 or lower class, even if brittle fracture initiates near the bond, the crack deviates to the
unaffected zone side of base metal due to the effect of residual stress field; but in the case of HT80 class steel, etc,
the crack tends to propagate along the bond embrittled due to large heat input welding. For this reason the notch
toughness of HAZ near weld bond of higher strength steels is important.

Since the bond in a welded joint has microstructural transition region as described above, the toughness
considerably varies according to the position of notch in a notch-toughness test specimen and is affected by the
quality of weld metal, etc. with regard to crack initiation and propagation courses. This happens when a brittle
upper bainite microstructure appears in the transition region of the bond. To investigate this by simplifying the
relation between notch toughness and microstructure of HAZ near a weld bond, the material of uniform quality
subjected to synthetic weld thermal cycle is mostly used. This simulation test is conducted by applying asingle
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weld thermal cycle corresponding to single layer weld or by applying multiple weld thermal cycles at a certain
position in the case of multilayer welding. Moreover, restraint conditions during a weld thermal cycle can also
be simulated. For example, a synthetic weld thermal (heating and cooling ) cycle was applied to the round bar
specimen of a HT50 class steel keeping its both ends restrained, a half size Charpy test specimen was cut off
from its middle part and the test was performed. In this case the effect of restraint on the toughness almost could
not be recognized in a wide range of cooling time S8/5 of 60 to 600 sec."”

Main composition of mild steels and HT50 class non-QT steels are C, Mn and Si; and also P, S, O and N are
included as impurities. To improve notch toughness of a weld HAZ, generally it is desirable that contents of
these elements shall be kept low and the impurities be decreased. In the upper bainite region in a SH-CCT
diagram for welding, high-C M-A constituent insular martensite ) is formed and facet unit increases, which
gives rise to brittleness. This M-A constituent is the insular part containing high-C martensite and retained
austenite surrounded by lath shaped ferrite. The limit of formation temperature regions of upper bainite and
lower bainite is not clear, but in low-C type steels it is about 400°C and the concentration of carbon in the
untransformed 7 surrounded by lath shaped ferrite seems to occur in the region from the bainite transformation
start temperature to near this 400°C It is said that in order to diminish this M-A constituent, decreases in C, N
and Si contents are effective. Lower carbon content makes martensite tough. Low N content and a decrease in
dissolved N due to TiN and BN accelerates fine ferrite transformation, makes strain ageing decrease and ensures
toughness, and such steels are being used for large heat input applications. A lower Si content accelerates
precipitation of cementite and makes the lath width of ferrite narrow and the toughness high. Moreover, it is said
that REM also accelerates fine ferrite transformation through formation of oxysulphide. TiN and BN are more
difficult to dissolve at high temperature compared to AIN and VN; and in HT50 class steels for large heat input
containing TiN or REM-B, fine nitrides precipitate in the process of cooling of weld HAZ, which serve as ferrite
generating nucleous and, tog ether with the low-N effect, suppress the formation of M-A constituent and ensure
high toughness.'?

Regarding HT50 class steels for large heat input containing TiN (as rolled, 30mmt), the notch toughness was
evaluated by single-V-groove butt welded joint, which was performed with a heat input of 150 kJ/cm (cooling
time from 800°C to 500°C : S8/5= 180S) for one-side single-layer submerged arc welding process, taking
2mm V notch Charpy test specimens from the middle of the plate thickness of welded joint, making a notch
including HAZ and weld metal (50% each) in the direction of plate thickness with the bond as the center and
determining the absorbed energy (VEO) at 0°C  On the other hand, in the case of an actual welded joint, since it is
difficult to quantitatively investigate the precipitation state of TiN in HAZ, observation of TiN particles and
quantitative analysis of insoluble Ti with electrolytic extraction were carried out by applying a synthetic weld
thermal cycle (maximum heating temperature 1350°C x 5S, S8/5 = 180S). From the results of this
investigation it was found that the optimum content of Ti is approximately 0.015% and that of N
approximately 0.0050% to obtain correct distribution of TiN for securing notch toughness of HAZ.'?

Regarding aluminum killed steels for low temperature use, coarsening of 7 grains has been prevented by
decreasing N and performing TiN fine dispersion treatment as well as extremely decreasing S and performing
Ca treatment for dispersion of stable Ca0 particles in the high temperature region. Regarding butt welded joints
of aluminum killed steel plate (20 to 40 mmt ) for low temperature use, 4-pass 4-layer welding was performed
with about 60 kJ/cm heat input without preheating and standard Charpy test specimens of 2Zmm V notch were
taken from the middle of plate thickness. On the other hand, regarding specimens subjected to synthetic single
weld thermal cycle heating time from room temperature to the maximum heating temperature 1350 to
1450°C : 10S, S8/5 = 32S) corresponding to the welding condition, similar Charpy test specimens were taken,
and the relations among the notch toughness (vTrs, vE-60 ), dispersion of TiN & Ca0 and microstructures were
investigated. As aresult of the investigation it was found that the notch toughness of HAZ near weld bond was
optimum when Ti/N=2 in the case that the content of N is below 80 ppm, and even more stable high toughness
was obtained by further extremely decreasing S and performing Ca treatment. This depends on fineness of 7
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grains and acceleration of fine ferrite transformation due to dispersion of TiN particles and stability of CaQO
particles near the weld bond.

In HT60 class steels, quenched and tempered (QT) steels are the main type, but because of such limitations as
hot forming or postweld heat treatment PWHT ), etc., the non-QT steels are also used. Generally the strength
of HT50 class steels is increased by adding Nb, V, Cr, Ni, Cu, etc., but in this case suitable procedure control
(preheating, heat input control ) is necessary because of the tendency of lowering notch toughness of HAZ. The
HTB60 class steels for large heat input welding are low-C low-N and TiN-treated HT50 class steel for large heat
input welding levelled up by quenching and tempering. The M-A constituent is decreased by suppressing the
formation of upper bainite in HAZ near weld bond of such steels and the microstructure changes to (F+P ) by
accelerating the ferrite transformation.?

Recently, controlled rolling (abbreviated as CR ) technology is developing at an alarming rate. In controlled
rolling, recrystallization behavior of 7 grains during hot rolling is most important factor; and superior base
metal characteristics (strength, toughness) are achieved by adjusting therolling temperature and the ratio of
rolling and using the recrystallization delay effect. That is, when rolling is done in uncrystallized region, the ¥
grains are elongated, deformation bands occur, formation of ferrite nuclei in Ar; transformation are accelerated
and the grains become fine. By further relating the Ar; and Ar, transformations based on this fineness of grains,
various technologies are being developed according to desired purpose, such as 2-phase region rolling,
controlled Cooling, retransformation hot rolling and tempering or the combination of their processes, etc.
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Fig.6 Comparision of various types of Thermo-Mechanical Control Process (TMCP) for steels
containing Nb

Fig .6 shows an outline of the various thermo-mechanical control processes. (1) represents conventional
rolling, (2) controlled rolling in unrecrystallized region and (3) shows 2-phase { @+ 7 ) region rolling by which
steels strong in brittle fracture propagation can be achieved from the mixed microstructure of ferrite containing
substructure and fine elongated 7 grains. (4) represents a type of process in which accelerated cooling is added
to the particular temperature range after normal controlled rolling of the above (2) and the strength is increased
without degrading the weldability by means of fine grains and rapid cooling microstructure. In this process,



water cooling stop temperature carries important meaning. (5) represents the process in which reheating and

rerolling are performed up to above the Ac; point after once cooling down to below the Ar, point. By this

process, tempering effect and formation of uniform fine grains are accelerated. In this process, the notch

toughness of steel is considerably affected by the ratio of rolling. By combining alloying elements

characteristics of materials can be further changed and the characteristics such as toughness of base metal and

HAZ, resistance against weld cracking, high yield strength and other characteristics for large heat input welding
purpose can be expected.
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Fig.7 Relation between cooling time and notch toughness in the synthetic weld HAZ near bond
for various high strength steels

The HT80 class steels are QT type whose hardenability has been increased by adding small contents of Cu,
Ni, Cr, Mo, V, B, etc.; the weld HAZ microstructure near bond is mainly the lower bainite and such composition
is adopted as to suppress the formation of upper bainite. In HT80 class steels there is a type to which Ni is not
added because of resistance to sulphide cracking, etc., but this is slightly inferior in notch toughness compared
to the type to which Ni has been added.'"¥ For ordinary HT80 class steels, the weld heat input is limited to 45
kJ/em maximum (plate thickness= 25mm) to prevent embrittlement in weld bond. To improve the toughness
of HT80, low-N, high alloying, low-Si or addition of large content of Ni, etc. can be considered. Boron is added
to HT80 class steels as an element for increasing the hardenability, but the boron effective for hardenability is
the soluble boron which segregates at the 7 grain boundaries before quenching and optimum content of this
soluble boron is said to be 3 to 5 ppm. Therefore, the hardening effect of boron is suppressed by AIN, BN and
boron carbide Fe23 (B.C)6 , etc., and low N is effective for ensuring notch toughness of weld HAZ near bond.
With regard to weld bond toughness for large heat input, the effect of adding Ti to a HT80 class steel is not so
prominent as in the case of HT50 or HT60 class steels; addition of large contents of Ti, Zr, Nb, etc. rather
degrades the toughness. Ni is the only element which improves toughness of ferrite matrix. Moreover, it affects
the bainite transformation behaviour; and by adding more than 2% Ni content, the bainite transformation start
temperature is lowered to change to lower bainite and the facet unit is also decreased by fine cementite
precipitation, which is effective for increasing the toughness. Like low_C, low_Si also tends to decrease
hardenability, but on large heat input side it suppresses the formation of insular M-A constituent in upper
bainite by changing the microstructure to (F+P), and is effective for improving notch toughness.

The relation between notch toughness and cooling time S8/5 from 800 to 500°C of synthetic weld HAZ
near bond for various types of high-strength steels has been investigated. Zmm V notch Charpy impact test was



performed on half sized (5x10x50mm) specimens after subjecting them to syntheti weld thermal cycle with
1350C maximum heating temperature and 5 seconds holding time, and fracture transition temperature vTrs
was determined. The results are shown in Fig.7. It has been found that the optimum cooling time for notch
toughness of HAZ shifts to the longer time side as the strength and contents of alloying elements increase; and
as compared to HT50 and HT60 class steels, the weld bond toughness of HT80 and HT100 class steels depends
more on the cooling time and they become very brittle on the large heat input side. This is because on the large
heat input side of any steel the upper bainite becomes the main microstructure and more M-A constituent is
formed as contents of alloying elements increase. The HT100 class steel contains about 4% Ni and is superior in
notch toughness under the practical welding conditions.'¥
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Fig.8 Relation between microstructure and notch toughness (Tr15,Trs) in the synthetic weld HAZ near
bond for high strength steels

Fig .8 shows the relation between synthetic weld HAZ toughness transition temperature with standard
2mm V notch Charpy impact test ) and microstructures near bond. The optimum microstructure with regard to
toughness is generally the one in which 10 to 30% lower bainite is included in martensite. As the cooling time
becomes longer and the quantities of ferrite and upper bainite increase, the toughness tends to decrease. However,
this trend does not hold good for the high- carbon type HT50 class steel (0. 22% C) because in this type the
toughness of martensite is low.!® For this, the limiting carbon content is said to be about 0.18%."”

Facet unit or effective crystal grain diameter of brittle fracture is closely related to microstructures. This is
said to be the finest in mixed microstructure of (martensite M + lower bainite LB } . In the upper bainite UB, this
facet unit becomes coarse and it becomes extremely brittle due to the formation of M-A constituent. In (ferrite F
+ pearlite P) microstructure, vTrs is proportional to the ferrite grain diameter d*2.

Fig.9 shows the relation between vTrs of synthetic weld HAZ near bond and the facet unit.'?"'9%9 In this
figure, in the case of HT80 class steel,as the microstructure changes from the mixed microstructure (M+LB ) to
(F+UB), vTrs shifts to considerably higher temperature side, so embrittlement due to change in microstructure
is recognized. This can be considered as the M-A constituent effect of in UB; and embrittlement remarkably
increases when the microstructure changes from UB 0% to UB 100% as the contents of alloying elements
increase .

XVl



Facet unit crack path, d(p)

100 50 40 30 20 10 5
100 T T T T 7 T T LN N R
HT80 (Ferrite + Upper Bainite,
L ( pp )
50
L ~ ® o
- HTS0
o (Ferrite + Pearlite)
@ 0
-
>
g HT50
@ (Tin treated)
il
o
£
it
5
£ 50 HT80
a DO
g (Martensite + Lower Bainite) o
o
3
[*)
¢l
“ O
“o
-100 o
O
-150 : ! :

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

log &2, e 12

Fig.9 Relation between notch toughness and facet unit in the synthetic weld HAZ near bond for HT50

and HT80 class steels
100
- A ""’A
¢”‘ ,/

e B e ~
] A S -
E o o A W’Q— - Do | ’<>
> /'/ / /
g - R R -
2 Pt / /
< - Sl Lo 4 & _4°
S S
2 —95/ //,/ P &
:—% -100 - 2 Mark Steel .
£ _,</ - —(O HT-50
2 ',/ —@~— | HT-60
g - ) ~mfx-n HT-80

- —<--+ | HT-100[A]

i —<--- | HT-100(B}

] 1 1. 1 1 1 ] i 1 i 13 L | I 1 i I [ i 1 i
0 5 10 15 20 25

Fraction of M-A constituent, %

Fig.10 Influence of martensite-austenite constituent, % synthetic weld HAZ toughness

XV



Fig. 10 shows the relation between vTTts of synthetic weld HAZ for various types of steels and the fraction of
M-A constituent. Without regard to the type of steel, their straight line gradients are almost the same, 8°C/%
M-A constituent. In this figure, the contribution of the facet unit on the vTTrs has been removed as -13°C/d ",
Moreover it can be seen in this figure that as the strength increases, the values of vTrs shift to the lower
temperature side. This is because of the toughness improvement effect of matrix due to Ni. Moreover, by means
of very lowC content, the amount of M-A constituent decreases, the morphology also becomes round and the
toughness of HAZ improves, which is very effective for large heat input welding purposes.'?
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Fig.11 Schematic diagram of effect of weld heat input on notch toughness and microstructures
in the weld HAZ near bond for various high strength steels

Eventually, the trend of the relation between notch toughness of weld HAZ near bond and weld heat input or
cooling time is as shown in Fig.11.”

For multilayer welding, the microstructures and notch toughness of the heat-affected zone (HAZ) change by
being subjected to multiple thermal cycles. The factors which affect this notch toughness can be considered to
be (1) fineness of crystal grains, (2) tempering effect of quenched microstructure, (3) embrittlement due to
heating above Ac, point, (4) tempered embrittiement around 600°C and (5) hot strain aging embrittlement at
200 to 350°C, etc.. Of these, factors (1) and (2) tend to improve the toughness whereas factors (3) to (5) tend to
decrease the toughness.

7 grains, which coarsen in weld single thermal cycle near bond, become fine in weld double thermal cycle in
the temperature range from 800 to 1000°C, but the fineness of 7 grains is not as effective as in the case of single
thermal cycle and the 7 grains become mixed size. In the case of steels below the Mn-Si type HT60 class steel,
in most cases the toughness gets improved by multiple weld thermal cycles, but if Nb, V and Cu, etc are
contained in large quantities, the weld HAZ near bond tends to become brittle and the embrittlement accelerates
when stress or strain is added. In the case of HT70 to HT100 class steels, the weld HAZ near bond becomes more
brittle than in the case of weld single cycle near bond when reheated to 750 to 1200°C, which differs with the
case of steels below the HT60 class.

Especially in the case of steels to which boron has been added, formation of BN in multiple thermal cycle
zone is prevented due to low-N, quenching effect increases and the toughness is improved. For embrittlement
above Ac, point, the main cause is considered to be the M-A constituent; effective soluble boron is assured due
to low-N and the formation of upper bainite including the M-A constituent is prevented.?”
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5. Weld Cold Cracking

Basically, the main factors for weld cold cracking of structural steels are (1) hardened microstructures, (2)
diffusible hydrogen and (3) restraint conditions.

These three factors are quantitatively analyzed by using weld thermal restraint simulator, and weld cold
cracking is evaluated.

For investigating cold cracking of the weld HAZ near bond, that is, delayed cracking due to hydrogen, as
shown in Fig.12, hydrogen is charged in high _strength steel specimens (outer dia. 7mm, notch depth Imm,
radius of notch tip 0.25mm) by changing the atmosphere from argon to hydrogen gas at 950°C during cooling
of a synthetic weld thermal cycle and the restraint distance ( displacement ) is kept constant or the load is
controlled at a constant value at a certain point during the cooling.
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Fig.12 Each cycle of thermal,strain,stress and hydrogen charge for investigating the delayed cracking
phenomenon due to hydrogen in the synthetic weld HAZ near bond
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Fig.13 Evaluation of cold cracking sensitivity in the synthetic weld HAZ of HT60 and HT80 class steels

Fig. 12 shows each cycle of temperature, displacement and load in such cases. Examples of the results are
shown in Fig. 13. From this figure the relation among the cooling time, the hydrogen content for HT60 and
HTB80 class steels and the critical restraint stress at which the delayed cracking occurs can be known. The figure



shows that the critical restraint stress of HT60 class steel is higher than that of HT80 class, and hence cold
cracking is difficult to occur in HT60 class. Moreover, for HT80 class steel, the critical restraint stress becomes
higher in the case of longer cooling time and it further increases as the hydrogen content decreases.
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Fig.14 Testing program of simulation test for hydrogen delayed cracking in the synthetic weld
HAZ near bond

In the same manner, the inhomogeneity of delayed cracking phenomenon for rolled steels can also be
investigated. According to the results of such investigation, the critical stress for weld cracking of through-
thickness specimen is very small compared to that along the direction of rolling and in the transverse direction.
This can be also used for analyzing lamellar tear.”
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Fig.15 Result of delayed cracking test of smooth specimen for a 2 1/4Cr-1Mo steels

Weld cold cracking occurs due to hydrogen embrittlement of hardened microstructures when hydrogen
diffuses at the parts where the restraint stress or strain of welded joints concentrates. The temperature at which
this cracking occurs ranges from 100°C to a normal temperature, and especially the concentration of residual
hydrogen at the points where the cracking occurs becomes a problem. The diffusible hydrogen of weld
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continues being discharged to outside atmosphere until the temperature reaches the normal temperature during
the cooling process of the weld thermal cycle, but it is necessary to investigate the critical value for
crackpreventing of residual hydrogen content of weld near 100°C  at which the cold cracking occurs. For this
purpose, a hydrogen delayed cracking test was conducted according to the program shown in Fig.14 on smooth
round factor weld bar specimens and notched round bar specimens (notch depth Imm and tip radius 0.4mm,
stress concentration Kt=2.5) using the weld thermal simulator. Fig.15 shows an example of the results of
testing with smooth round bar specimens for a 2 1/4Cr1Mo steel.
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Fig.16 shows the delayed cracking critical stress oer obtained from these test results and the calculated
hydrogen content in the middle part of notched round bar specimen. The ocr value decreases as using the
restraint hydrogen content increases, and the ocr value of notched round bar specimens is lower than that of
smooth specimens. In oblique y-groove weld cracking test, since the restraint stress is considered to be of the
order of the yield strength oy of HAZ, the critical hydrogen content for preventing delayed cracking at
oy=90kgf/mm? is about 1.0 cc/100gr for the smooth specimen and about 0.3cc/100gr for the notched one.””

The test for delayed cracking due to hydrogen for various kinds of structural steel is also possible by
preparing specimens subjected to synthetic weld thermal cycle, adding hydrogen to them by cathodic
electrolysis method and then, if necessary, plating them with cadmium for suppressing discharge of hydrogen,
and performing constant-load tensile test on them at a room temperature; which enables evaluation of cold
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cracking sensitivity of weld HAZ near bond. In this manner, an almost linear relationship was achieved between
critical restraint stress for weld cracking obtained from oblique y-groove TRC (tensile restraint cracking) test
and the ratio (cc/ot) of critical tensile stress obtained from simulation test for delayed cracking due to hydrogen,
oc and notched tensile strength, ot, as shown in Fig.17.

As regards evaluation of lamella tear susceptibility, for detecting the time of tear in the laminated
nonmetallic inclusions due to the contraction strain during welding, it is possible by simulating the weld
thermal cycles in the middle of the parallel part of a through-thickness tensile test specimen keeping its both
ends restrained and mounting the AE sensor in the grip of weld thermal restraint simulator. According to the
results of this test, generation of acoustic emission (AE)was confirmed from the stress levels lower than the
yield strength of HAZ in the cooling process of weld thermal cycle and it was found that the tear is easy to occur
near about 300 “C without regard to the kind of nonmetallic inclusions.24) Moreover, it was also clarified in
constant load tensile test of through-thickness specimens in which hydrogen was by cathodic electrolysis, that
the roles of microstructures and hydrogen are large for the propagation of lamella tear from nonmetallic
inclusions.?”

6. Reheat Cracking

Reheat cracking tends to occur along grain boundaries of coarse “rained HAZ near weld bond at the time of
postweld heat treatment of HT80 class steels or Cr-Mo-V type steels, etc. As for the cause of this cracking, there
are two lines of thinking. According to one, at the time of postweld heat treatment the intragranular region gets
strengthened by fine precipitates of precipitation hardening elements and slip occurs preferentially at grain
boundaries which leads to cracking; and according to the other, the intergranular segregation of impurities,
similar to temper embrittlement, occurs and the intergranular strength decreases which leads to the cracking.
Practically, reheat cracking is considered to occur due to the result of combination of both of these factors.

Using the weld thermal restraint simulator, there is circular notched loading test-method during heating
process, to evaluate quantitatively the susceptibility of reheat cracking. Reheat cracking occurs when the strain
applied to material at the time of postweld heat treatment becomes larger than the strain capacity of the material.
So it is necessary to evaluate the continuous stress relaxation and amount of strainduring the heating process
and holding process of postweld heat treatment.26) For this, thermal cycle near weld bond was simulated in a
circular notched specimen (for example, specimen of outer dia.10mm, notch depth  1mm, notch tip radius
0.25mm, stress concentration factor Kt=3.4), the specimen was heated at a constant rate {150 to 200°C/hr) up to
aspecified temperature (600 to 720°C) after applying initial stress load at a room temperature, and then kept for
a fixed period of time (1 to 2 hours) and investigated for cracking. The critical displacement or critical stress for
producing cracking was determined and these values were taken as an index of reheat cracking susceptibility.

Fig.18 shows an example of thermal. stress cycles used in the reheat cracking simulation test. In this figure,
zero load control and free expansion and contraction are adopted during the synthetic weld thermal cycle. In
reheat treatment, temperature is raised up to specified temperature at a constant rate after applying initial stress
of 5 to 50 kgf/mm? , and the load is kept constant at that temperature. An example of relation between the
displacement and temperature on heating of reheating process for a 2 1/4Cr-1Mo steel achieved in this manner is
shown in Fig.19. The cracking shifts to the high temperature side as the initial load stress decreases, but the
critical displacement becomes minimum near 600°C and shows a concave curve. Evaluation can be made with
the critical initial stress where reheat cracking occurs at 600°C on heating, which is more convenient, simple
and practical.27) The results of loading test during reheating of circular notched specimens for various kinds of
Cr-Mo steel show that addition of V (0.05 to 0.25%) or Mo increases reheat cracking susceptibility by
intragranular precipitation hardening, which is highest when Cr content is about 1%, but cracking is rather
difficult to occur when Cr content is about 3%.%
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To investigate stress relaxation characteristic at postweld heat treatment, initial strain is applied to a round
bar specimen at aroom temperature, the specimen is heated up to a specified temperature at a constant heating
rate while keeping the initial strain along a predetermined thermal expansion curve, and held at that temperature
for a certain period of time, and the stress relaxation state is measured during this process. In this case, in order to
achieve a wide uniform heat zone, a high frequency heating coil of about 5 turns is used, a single bevel notch or
projection for measuring displacement is applied to the specimen, and a quartz knife edge (GL about 17mm) and
differential transformer are mounted. To investigate intergranular fracture strength of synthetic weld HAZ,
synthetic weld thermal cycle near bond is applied to a notched round bar specimen, the specimen is heated up to
aspecified temperature at a constant heating rate under constant load condition and is kept at that temperature
until it fractures. Fracture initiation and propagation was observed by means of a high temperature microscope,
and the relation between the time or temperature when intergranular fracture occurs and the intergranular fracture
stress was determined. A combination of the curves of stress relaxation characteristic and intergranular fracture
strength is shown in Fig.20. The figure reveals that in a HT100 class steel, when initial stress is larger than about
22 kgf/mm? , the two curves intersect, fracture occurs during the reheating process and the reheat cracking
susceptibility is very high. On the other hand, in the case of a HT60 class steel, two curves do not intersect and
the reheat cracking susceptibility is low.??
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As for practical industrial test for investigating reheat cracking through actual welding and postweld heat
treatment, there are oblique y-groove reheat cracking test and H type restraint reheat cracking test, but analysis of
the reheat cracking phenomenon is difficult.

7. Final Comments

In this paper, the application of simulation test technology has been described only for the behaviour of weld
HAZ near bond for structural steels, but the technology can also be used for evaluating the behaviour including
fusion and solidification of weld metals and for evaluating the performance of welded joints under various
environmental loading conditions.

Moreover, with suitable invents it can also be applied to alloying design in steel production and analysis of
continuous casting, controlled rolling and heat treatment, and is already being used to some extent for these
purposes. The equipments described here are already in regular use in main Japanese steel manufacturers,
welding procedure companies and engineering companies. Further new applications of these equipments are
under investigation.
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Materials Information System on the Internet

(Prediction of the Properties of Weld Heat-Affected Zones, http://inaba.nrim.go.jp/Weld/ )

Mitsunae FUJITA, Jun-ichi KINUGAWA,
Akira OKADA and Takayoshi KASUGAI

1. Introduction

In recent years, rapid advance has been made in the field of information processing technology using
networks and computers. This progress has enabled everyone to transmit valuable information through the
Internet and thus play an active role in his field.

The previous sentence is very unclear and convoluted. In the technical field of welding, the systematic
organization of theories and past experiences into a database system and the availability of such asystem to the
public on the Internet can undoubtedly promote continuous transfer and development of welding technology.
However, breakthroughs concerning how to store and retrieve data and express results are necessary for the
realization of this useful system.

National Research Institute for Metals (NRIM) has been constructing a new system to predict the micro-
structures and mechanical properties of weld heat-affected zones (HAZ) which combines a database system of
continuous cooling transformation diagrams for welding (CCT diagrams) and an expert system for computing
weld thermal histories. In addition, this system employs a technique which was invented while developing
another distributed database system named * Data-Free-Way” (DFW) for advanced nuclear materials [1] and
others obtained through some programs of welding research at NRIM in the past [2].

This paper describes the present state of our new system for predicting the properties of weld HAZ s, which is
now available through the Internet. Some problems with the database in such a system are also presented.

2. General Concept of an Information System for a Welding Procedure

Generally speaking, any welding procedure needs the following information: the material to be welded (base
metal), the geometry of the joint (how to prepare its edge), the welding process, welding consumables, and
procedural parameters such as weld heat input and conditions of pre/post-weld heat treatment.
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Fig. 1  Schematic representation of a materials information system.
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Besides, especially in order to make sound welds, the following problems must be solved as well: yes-or-no
of weld cracks caused by hydrogen, residual stresses and martensitic structures, and needless to say, service
performance including the mechanical properties of the joint must be predicted in advance.

Due to these special requirements of the welding procedure, any designed system should be able to answer as
many of these questions as fast and accurately as possible. Such asystem may be a combination of some sub-
systems, i.e., a database for the procedural data of welding, a knowledge base for past empirical data, an expert
system for calculating heat flows, and thermal experiences during welding.

Last, but not least, attention should be focused on the fact that, even though a great advance in the field of
database technology is surely expected in the near future, only a very limited amount of empirical information
can be stored and retrieved. Thus, if possible, it is desirable to prepare a function for conducting some remote
operations as is referred to elsewhere.

Welding Database yyeging heat
conduction simulation s

Opening screen

CCT diagram and
microstructure

i

«

o Calcutation for hardness and
Selection of CCT diagram composition of microstructure

Fig. 2 Outline of the heat-conduction simulation for the properties of welded HAZ.
3. System for Predicting the Properties of Welded HAZ

3.1 Outline

The schematic representation of our distributed database system DFW for materials information on the
Internet is shown in Fig. 1. A new sub-system for predicting weld HAZ properties was put in this old DFW
system.

The new system is substantially an updated version of the prototype by Okada et al. [2], which is operated
only on a personal computer and consists of mainly two parts.

Oneis a database, the major part of which is filled with factual information obtained at NRIM in the past,
while the rest contains bibliographic information collected from various places around the world. The database
stores the information not only in numerical data or letters but also in a certain form of diagrams or photographs.
Users can retrieve this information in printed form, which differs little from that displayed on monitors at
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present. Nevertheless, because of the difficulties entailed in expressing all the practices of the welding procedure
in astill photograph, it may be necessary to store them in motion pictures with voice and sound in future. Such
a sub-system, as well as the hardware for it, is currently being prepared by our group. Most of the stored
information are CCT diagrams in welding steels, which show transformation temperatures and metallographic
changes of weld HAZ*s during cooling from some 1623 K (just below the melting temperatures of steels) under
different rates of cooling as well as the resulting constitution of micro-structures and hardness. The database
stores all curves of transformation starting temperatures in numerical values as well. Storing data in numerical
values is most advantageous for their most efficient use and expression throughout the system. In the present
system, however, data are not yet linked directly between this CCT diagram database and the Weld thermal
history simulator presented later. Further consideration may be necessary for finding the best way to store
data. ’

The other is an expert system for simulating the temperature distributions around the part being welded.
Hereafter, this system is referred to as "Weld thermal history simulator”.

Users who have to make a final decision for each of the procedural parameters often need more detailed and
concrete information than the very things retrieved from the database. To meet such a need, in the present system,
some functions for making remote experiments or remote maintenance are prepared in advance.

The whole system can be used anywhere in the world where an Internet Browser (Netscape, Explorer, etc) is
available. Figure 2 illustrates the outline of this system and gives a guide map to access the CCT diagram
database, the Weld thermal history simulator, or an animated program for beginners on how to utilize them.

3.2 CCT Diagram Database

3.2.1 Outline

For utilizing CCT diagrams through the Internet, data are managed by using the Oracle, which is connected
with the Oracle Web. They are retrieved by accessing the Web through an Internet browser. This operation is
made by clicking the mouse or hitting digit keys. Instructions on the screen make the operation easy.

The database is featured by the ability to connect the stored data with image files or some programs outside
the database such as the Weld thermal history simulator.

Base of CCT diagram Image data Numerical data of image
= ] CCT diagram Characteristics of image
Table of steel A CCT diagram
(image file ) Steel product ID
Steel product ID Position of each phase
Steel product name Phase trans. initiation time
Name after performance Tansformation curves
Chemical composition s
Mechanical property B Picture indicating Steel product ID ‘
Literature ID the dependence Kind of drawing line
on cooling veloci Straight and curved line
Drawing sequence
Drawing start point
Cooling time and hardness e Drawing end point
C Microscopic
Stedl pro@uct D photograph of Hardness and micro- | Coordinates for trans.
Cooling time . structure const. ratio | curves
Hardness micro structure

Steel product ID
Kind fo drawing line

Fig. 3 Data structure of a CCT diagram database.
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3.2.2  Stored Data and their Structure

The stored data include the chemical composition and mechanical properties of the said steel, its CCT
diagram, the graph attached to the diagram, which shows the change in HAZ hardness, and also that in micro-
structural constitutions with cooling time, the photo-micrographs of HAZ, the datain numerical values and
letters directly connected with any CCT behavior of the steel, and data somehow associated with it.

Figure 3 explains their structures. The table for the product forms of steels consists of the product ID, its
proper, popular, or technical name, another name after some processing, its chemical composition, and its
mechanical properties, while that for cooling time and HAZ hardness contains its product ID and the critical
(shortest) values of cooling time necessary for making phase transformations of the steel. The database stores
CCT diagrams and the attached graphs showing the change in HAZ hardness and microstructure with cooling
time in two data forms, i.e, image and numerical data. As mentioned before, experts in welding should be
relatively familiar with these images. On the other hand, needless to say, numerical data are essentially
suitable for making experimental formulas of the HAZ hardness or ratio of micro-structural constitutions vs.
cooling time. Thus, quantitative information of HAZ properties can readily be obtained in advance to the
welding procedure by substituting the predicted time of cooling into these formulas.

3.2.3 Expression For retrieval

For retrieving CCT diagrams, such items, measures, and parameters may be thought of as the name of the
steel to be retrieved, its properties, application, chemical composition, micro-structure, and, in some cases, the
morphology of the phase transformation and its rate. Moreover, as a preliminary step of retrieval in the present
CCT diagram database, several of the CCT diagrams, which are presumed to meet the user‘s requirements, are
listed by inputting some of these items, measures, and parameters. Here, the morphology of the transformation
and its above-mentioned rate are substituted briefly by the type (shape) of the CCT diagram and the critical
cooling time at which the transformations start. Then, the user finally selects the most appropriate one to be
displayed from those retrieved firstly.
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Fig 4 Original CCT diagram expressed by image data (a), that recomposed by numerical data (b),
and another expression for retrieval of numerical data ().



(b) is recomposed of the numerical data stored in the database. In order to express the CCT diagram more
simply, only its essence is given here. Since such re-composition needs only a limited number of numerical data,
it results in a shortened time of retrieval as well as a reduced load on the network. In addition, several CCT
diagrams can be compared at the same time.

Another attempt for expressing the retrieval of numerical data was made by adopting the JAVA language. An
example of such retrieval is shown in (c). This makes it possible to express simultaneously any numerical data
such as HAZ hardness and micro-structural constitutions for a specified rate of cooling.

For HAZ micro-structures, users can exhibit their photographs on a display either one by one or as a set.

3.3 Weld Thermal History Simulator

3.3.1 Inputting Data

Computations of heat flows require thermal properties such as the thermal conductivity and specific heat of
materials. The melting temperatures and Acl transformation temperatures of steels are also necessary for
computing the locations of molten pools and weld HAZ s, respectively. In addition, computations require such
procedural parameters of welding as the arc current, arc voltage, welding speed preheat temperature, and
dimensions of the work to be welded. Figure 5 shows the screen for inputting these data in the present simulator.
Most of the data are input by hitting keys. In addition, by operating his mouse, the user can select other
information related to the heat source such as its shape and energy density. On the screen, boxes for setting
conditions and patterns representing features of heat sources are laid out for inputting data with ease. Complete
inputting, however, requires that the user of the system have some degree of expertise of welding.

<< Welding Heal Conduction Simulator »>

@ Input of value of various parameters using the calculation.
{ Thermat Constant }

Condacthvity  Specifictiest  Dessity Qittasidty Fusion Temp.  Act Temp,
(caikecem K} (eatig d} (gem3) feamzie ® )
| tnitial Condition | { Welding Condition |

hicinesy Ambicnt Temp  Curreat Vaoltage Véciding Speed  Hest fupy

{osg} {cmimin} Lhouie und

[t4] A W
1 B

1. Decision of seament size of heat source.

[D-type | [ R-type | { He-type |

R ]
Ex : 10mm Ey :5mm

2. Decision of energy density.

-y = &

[FRNRECXNEY

3. Decision of ratio of each segment.

R ot g et e, 2B

50% % 5%

Screen for setting of energy density of heat source.
@ Calcutation for morphoiogy of motenpool and thermal cycle at bond

Fig. 5 Data input screen of the thermal properties of materials for thermal cycle prediction.
using the heat-conduction simulator.



With a view to making a more usable database, especially for non-experts of welding, we are now collecting
additional data of heat sources applicable for different welding processes and welding conditions.

3.3.2 Method of Computations

Numerical computations, which are necessary for simulating transient or quasi-stationary distributions of
temperatures around the part being welded, start by inputting the datastated above, pushing the button that
reads "start computation", and then, using a program sent from the Web server. The program is written in the
JAVA language. Thus, the computations run without a platform. They are executed by taking the most suitable
measure, ar in some cases, by combining suitable ones from empirical equations reported in the past, analytical
solutions, or an iterative finite difference method.

3.3.3 Expression of Computed results

The results of computations are expressed as shown in Figs. 6 and 7. Figure 6 shows the contour line of the
melting temperature and that of the Acl temperature on the transversal (perpendicular to the weld centerline)
cross-section of a weld, which give the profile of a molten pool and HAZ, respectively. In Fig. 7, the weld
thermal history at + point in Fig. 6 and that at the crossing point of two fine lines in the same figure are drawn in
two curves. Inputting the coordinates of such points is achieved by only pointing and clicking with the mouse.
Asslight but not negligible difference between the two is seen, especially around their peaks.

Needless to say, the HAZ hardness and micro-structures of a steel result from its thermal history during
welding and its chemical composition. In practice, they correspond to the time of cooling from A3
transformation temperature to 773 K (500 “C). As amatter of course, every computed curve makes it possible to
predict HAZ hardness and micro-structures for each specified steel. In brief, the CCT diagram database and

Weld thermal history simulator make it possible to predict the HAZ hardness distribution for a steel.

i Netscape: Welding Heat Conduction Simulator
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Fig. 6 Shape of molten pool and HAZ. Fig. 7 Thermal history curve at + point and

cross lines shown in Fig. 6.

3.4  Prediction of Weld HAZ Properties
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3.4.1 Flow of Prediction

The present system has a database subsystem in the computer to memorize data temporarily, according to the
flow of calculation, as shown in Fig. 8.

First of all, we select a steel, the chemical composition of which is the closest to that of the steel to be
predicted. Then, we retrieve the CCT diagram of the selected steel. The retrieved CCT diagram and all the data
concerned with it are sent into that subsystem automatically. In these data, we find a graph which shows the
change in Vickers‘ hardness (load: 9.8 kN) and that in the ratio of micro-structural constitutions (area %) with
cooling time from Ac3 transformation temperature to 773 K (500 “C). Figure9 shows atypical example of
such graphs. Experimental formulas of HAZ hardness and ratio of micro-structural constitutions as a function
of cooling time are also stored temporarily in that subsystem.

Selection of  welding steel

Input of welding conditions

Calculation of cooling time from Acl to 773 K for every point at intervals of Imm in HAZ

Retrieval of the hardness corresponding to the time from the CCT diagram database

Drawing of the hardness map

Fig. 8 Flow-chart for the prediction of weld HAZ properties.

Second, thermal properties of the selected steel and procedural parameters of welding are input into the Weld
thermal history simulator. Computations of cooling time were executed over the whole HAZ. Finally, we get
the contour lines of HAZ hardness by referring the computed cooling time at each point to the formula of HAZ

hardness.
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time from Ac, transformation temperature to 773 K.

3.4.2 Hardness Distribution Map
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Figure 10 shows an example of hardness contour lines on the transversal cross-section of a bead weld. In the
figure, the white-washed and semi-elliptical zone is that of weld metal, and its outside is the HAZ. Hardness,
which is the highest just adjacent to the bond line, gradually lowers towards its base metal zone. The reason for
this is the nature of heat conduction, in which the shorter distance from the heat source causes a higher peak

temperature and faster cooling.

Fig.10 Hardness contour lines on a cross-section of weld.

Thus, all the data retrieved here converge into a hardness distribution map. Usually, it takes a long time and
much effort to get such a map by processing measured dataonly. The present system of prediction, however,
achieves the same purpose quickly and with ease. In Fig. 10, the map is ruled into 1-mm squares. Finer squares,
which are available, allow for more detailed and delicate information for predicting the geometry and properties
of HAZ"s; this is helpful to check any overlooks and to make welded joints of higher quality.

This subsystem for making HAZ hardness distribution maps is a combination of the subsystem of the CCT
diagram database and that of the Weld thermal history simulator. It is currently being rearranged for more
diversified kinds of steel products and more extended ranges of procedural parameters of welding. Before long,
this third subsystem will be available to the public on the Internet. It is believed that the release of this system
will contribute to the circulation of technical information of higher levels. Another subsystem for making HAZ
micro-structural constituent distribution maps will also be available in the future.

4. Future Problems

Our next target of development is asystem forrapid exhibitions of images, maps, and photographs. After
realizing it, the system is to be improved for three-dimensional computations and exhibitions.

Further acquisition of data is most essential. Few CCT diagrams of advanced materials have been input in
the recent past. Our database will be completed by supplying such lack, helping us to understand the
historical process of materials technology and predict future materials. A database for welding consumables
such as welding rods and wires may be necessary, especially for matching the properties of weld metal to those
of base metal. Databases for service performances and case studies on accidental fractures of welded joints
components and structures are also future problems.

5. Concluding Remarks
To achieve state-of-the-art welding, it is desirable to increase the mutual utilization of information between
the fields of materials and welding. The new system presented in this paper represents such an effort. It

combines a database system of continuous cooling transformation diagrams for welding and an expert system
for computing weld thermal histories, both of which have been accumulated and developed at the National
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Research Institute for Metals over several years.
The work was conducted as part of the "Research Information Database Service Project” sponsored by the
Japan Science and Technology Corporation.
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Note for Symbols used in CCT diagrams

A Austenite

F Ferrite

F+Zw Ferrite + Bainite
P Pearlite

7w Bainite

M Martensite

Cz—Cz*  Starting time of bainite transformation on cooling from A; or Ac; to 773K
Cf—Cf*  Starting time of ferrite transformation on cooling from A; or Ac; to 773K
Cp—Cp* Starting time of pearlite transformation on cooling from A; or Ac; to 773K
Ce—Ce® Ending time of all transformations
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CCT Diagram for Welding



Simple Fe-C-X Alloy

Fe-C Alloy
Chemical Composition (mass%)

Seel e | si | Mn s | N | e | cu | Mo V| Ti| N | oal Page | Ref.
C-0.08 | 0.08 | - - ; - : . ; ; . . . 2 1
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C-038 | 0.38 - - - - - - - - - - - 8 i
C-053 | 0.53 - . - - - - - - - - - 10 1
C-0.94 | 0.94 - - . - - N - - - y . 12 1
C-137 | 137 - - - - . - - - - - - 14 1
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Fe-C-Si-Mn Alloy

Chemical Composition (mass%)
Steel Page | Ref.
C Si Mn S Ni Cr Cu Mo v Ti Al

Si-0 0.11 0.46 - - - - - - - - 18 2
Si-0.2 | 0.1 | 0.22 | 046 - - - - - - - - 20 2
S$i-0.5 0.11 | 0.56 | 047 - - - - - - - - 22 2
Si-1.0 | 0.12 L1 | 043 - - - - - - - - 24 2
Si-1.6 | 002 | 164 | 04 - - - - - - - - 26 2
Mn-0 0.11 0.21 - - - - - - - - - 28 3
Mn-1.0 | 0.11 0.21 1.06 - - - - - - - - 30 3
Mn-2.0 | 0.12 | 0.21 2.05 - - - - - - - - 32 3
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Fe-C-Ni Alloy

Chemical Composition (mass%)
Steel Page | Ref.
C Si Mn S Ni Cr Cu Mo \ Ti Nb Al

Ni-1.0 0.11 - - - 1.07 - - - - - - - 36 4
Ni-2.5 | 0.14 - - - 2.43 - - - - - - - 38 4
Ni-3.5 0.11 - - - 3.49 - - - - - - - 40 4
Ni-5 0.16 - - - 5.06 - - - - - - - 42 4
Ni-7 | 0.14 - - - | 702 . - - - - - - 44 4
Ni-9 0.1 - y - 9.11 - - . - - - - 46 4
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Fe-C-Cr Alloy

Chemical Composition (mass%)
Steel Page | Ref.
C Si Mn S Ni Cr Cu Mo \ Ti Nb Al
Cr-0.5 | 0.11 | 0.22 | 035 - 0.47 - - - - - 50 5
Cr-1 0.1 | 0231 035 i - - - - 52 5
Cr-2 0.1 | 0.23 | 035 - 1.97 - - - - - 54 5
Cr-4 0.09 | 0.22 | 0.37 3.86 - - - - 56 5
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Fe-C-Cu Alloy
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Fe-C-Mo Alloy

Chemical Composition (mass%)
Steel Page | Ref.
C Si Mn S Ni Cr Cu Mo v Ti Nb Al
Mo-0.5 | 0.12 | 0.16 | 0.45 - - - - 0.48 - - - - 64 P
Mo-1.0 | 0.11 0.23 0.43 - - - - 0.96 - - - - 66 6
Mo-1.6 | 0.11 | 0.22 | 0.37 - - - - 1.66 - - - - 68 6
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Fe-C-Ti Alloy

Chemical Composition (mass%)
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Fe-C-V Alloy

Chemical Composition (mass%)
Steel Page | Ref.
C Si Mn S Ni Cr Cu Mo A Ti Nb Al
V-3 0.11 | 0.23 | 041 - - - - - 0.1 - - - 76 P
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Fe-C-Nb Alloy

Chemical Composition (mass%)
Steel Page | Ref.
C Si Mn S Ni Cr Cu Mo v Ti Nb Al
Nb-3 0.11 | 0.23 | 0.42 - - - - - - - 0.095 - 80 P
Nb-2 0.17 | 0.22 0.4 - - - - - - - 0.11 - 84 P
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Fe-C-Al Alloy

Steel

Chemical Composition

(mass%)

Si

S

Ni

Cr

Cu
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Ti

Nb
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Page

Ref.
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Fe-C-B Alloy

Chemical Composition (mass%)

Steel Page | Ref.
C Si Mn P S Ni Cr Cu Mo v Ti Nb Al B

B-3 0.1 0.23 | 041 - - - - - - - - - - 10.00i6| 92 P
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Experimental and Commercial
HT-50kg/mm? Class

Chemical Composition (mass%)
Steel Page | Ref.
C Si Mn P S Ni Cr Cu Mo Vv Ti Nb Al
RS 0.1 | 0.0f | 0.41 | 0.015]|0.043| 0.02 | 0.03 | 0.18 - - - - 0.005 96 7
SS 0.1t | 0.02 | 0.61 | 0.008 | 0.025| 0.02 | 0.03 | 0.15 - - 0.005 98 8
20g 0.14 | 0.25 | 0.58 | 0.015] 0.031 - - - - - - 100 P
FH 0.14 | 0.09 | 096 | 0.018]0.026 | 0.06 | 0.07 | 0.18 - - - - 0.054 102 7
SM41B | 0.16 | 048 | 1.42 - - - - - - - - - - 104 P
SM41A | 0.11 | 0.29 | 147 - - - - - - - - 0.027 | 0.035 108 P
YND33 | 0.08 | 0.24 | 1.15 | 0.011 0.007 - - - - - - - 112 9
KS 0.14 | 023 | 0.65 | 0.012| 0.007 | 0.02 | 0.02 | 0.16 - - - - 0.008 114 7
NK 0.13 | 0.23 | 1.18 | 0.02 | 0.025| 0.04 | 0.04 | 0.13 - - - - 0.018 116 7
SM50B | 0.14 | 0.32 | 1.32 - - - - - - 0.003 - - - 118 P
SM50BS1| 0.15 | 0.28 | 0.97 - - 0.02 | 0.01 - - - - - - 120 P
YD 0.13 | 041 | 1.08 | 0.025]0.012} 0.02 | 0.02 | 0.16 - - - 0.052 124 8
E602 0.15 | 0.4 | 1.19 - - 0.09 - - - - - - 126 9
Corten 0.09 | 054 | 1.34 | 0.096| 0.03 | 0.44 | 0.96 | 0.32 - - - - 128 10
YE 0.16 | 0.45 | 1.18 | 0.019| 0.018 | 0.02 | 0.02 | 0.21 - - - - 0.049 130 7
KT 0.15 | 0.42 | 1.21 | 0.016| 0.02 | 0.06 | 0.04 | 0.14 - - - 0.051 132 7
E599 0.19 | 0.41 | 1.17 - - - 0.06 - - - - - - 134 P
SM50BC1| 0.13 | 0.44 | 1.44 - - 0.18 - - - - - 0.026 | 0.028 136 P
SiMn 0.22 | 0.12 | 1.08 | 0.024 | 0.027 - - - - - 0.01 - - 140 9
HT50

FTW52B | 0.16 | 0.41 | 1.22 | 0.012 | 0.021 | 0.02 - 0.08 - - - 142 10
NM 0.14 | 053 | 1.12 | 0.011| 0.01 | 0.06 | 0.04 | 0.06 - - - - 0.04 144 7
Welten55C| 0.18 | 0.47 1.4 - - 0.04 | 0.05 - - - - 0.061 146 P
16CMnR | 0.18 | 0.38 | 1.34 | 0.014 | 0.012 - - - - - - - - 147 P
SM50A | 0.17 | 0.34 | 1.31 - - - - - - - - - 148 P
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HT-60 kg/mm* Class

Chemical Composition (mass%)
Steel Page | Ref.
C Si Mn P S Ni Cr Cu Mo v Ti Nb Al B

YB 0.13 | 0.48 1.4 | 0.016| 0.007; 003 | 0.04 | 0.15 - - - - 0.023 - 152 P
NRIMB-3 | 0.12 | 035 | 1.38 - - 004 | 0.18 - - - 0.167 | 0.078 - 153 P
FTW52A 0.09 | 037 | 1.34 | 0.019| 0019 0.02 - 0.11 | 0.01 | 0.06 - - - - 154 10
YA 0.17 | 0.24 | 1.34 | 0.024| 0.019] 0.04 | 0.02 | 0.21 - - - - 0.027 - 156 P
YC 0.18 | 047 1.4 | 0.029| 0.019| 0.04 | 0.05 | 0.17 - - - - 0.061 - 158 7
SMS50BNI | 0.19 | 0.04 | 1.00 - - 0.02 | 0.62 - - - - - - - 160 P
NC 0.16 | 0.51 1.1 - - 0.04 | 0.06 - 0.01 | 0.011 - - 0.047 - 164 P
NA 016 | 045 | 1.12 - - 0.04 | 0.06 - 0.02 | 0.011 - - 0.017 - 165 P
YG 0.11 | 042 | 1.12 1 0.012] 0.009| 0.47 | 027 | 0.07 | 0.16 | 0.13 | 0.015 - 0.047 - 166 7
NB 0.16 | 043 | 131 - - 0.04 | 0.06 - 0.02 | 0.017 - - 0.05 - 168 P
S-5 0.16 | 046 | 135 | 0.018] 0.027 - - 0.15 - - - - 0.02 - 169 P
ASTMA302B| 0.19 | 023 | 1.25 - - 0.66 | 0.07 - 0.54 - - - - - 170 P
S-1 0.13 | 048 | 1.37 | 0.014]| 0.007 - 0.22 - - 0.13 - - 0.022 - 171 P
2HA 0.15 | 053 1.2 - - 0.09 | 0.03 - - - - - 0.08 - 172 P
NF 021 | 048 | 1.19 - - 0.06 | 0.05 - 0.01 | 0.009 - - 0.1 - 173 P
2H-Te 0.1t | 0.17 | 1.24 - - 021 | 0.18 - 0.15 - - - 0.029 - 174 p
6NA 0.12 | 045 | 1.17 - - - 0.32 - 0251 0.14 - - - - 175 P
S-6 0.07 02 | 075 001 { 001 § 043 | 051 | 021 | O.11 | 0.08 - - 0.0t - 176 P
6NC 0.15 1 035 | 1.28 - - 0.47 | 0.08 - 021 0.1 - - - - 177 P
NE 0.2 0.4 112 - - 0.05 | 0.09 - 0.01 | 0.009 - - 0.048 - 178 P
6NF 0.15 | 0.26 | 1.02 - - 0.6 0.1 - 0.37 | 0.08 - - - - 179 P
S-3 0.11 | 037 | 1.34 | 0.015| 0.01 | 047 | 027 - - 0.1 - - 0.017 - 180 P
2HB 0.11 | 048 1.2 - - 0.08 | 0.05 - - - - - 0.001 - 181 P
FTW58 0.17 | 038 | 1.31 | 0.026) 0.017| 0.04 - 0.11 | 0.01 | 0.04 - - - - 182 10
6ND 0.14 | 0.26 | 1.28 - - 086 | 05 - 0.46 - - - - - 184 P
E595 0.18 1 04 1.16 - - - 0.08 - - 0.12 - - - - 185 P
NRIM 37 007 | 05 1.49 - - 05 | 012 - 0.3 - - - - - 186 P
NRIM 431L | 0.08 | 0.41 | 1.45 - - 0.49 | 0.29 - 0.39 - - 0.15 - - 187 P
NRIM 432M | 0.13 | 0.47 | 1.44 - - 0.1 | 019 - - - - 0.15 - - 188 P
NRIM 55 0.07 | 049 | 1.49 - - 0.57 | 0.12 - 0.28 - - - - - 189 P
KQ(Hi-Z) | 0.15 | 028 | 092 - - 0.08 | 0.04 - 046 | 0.04 - - - 0.006 | 190 P
2HBI 0.13 | 045 | 1.08 - - 0.05 | 0.32 - - 0.15 - - 0.019 - 191 p
WT-60 0.13 | 046 | 1.22 - - 0.08 - - - 0.1 - - - - 192 p
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Temperature (K)

Vickers Hardness Number ( Load 10 kg)
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Temperature (K)

Vickers Hardness Number ( Load 10 kg)
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Temperature (K)

Vickers Hardness Number ( Load 10 kg)
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Temperature (K)

Vickers Hardness Number ( Load 10 kg)
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