超高温耐熱セラミックスの研究開発

(昭和55~59年度無機材質特別研究) (第 1 報)

1981

科 学 技 術 庁 無機材質研究所研究報告書第29号 目

1.		研究	究概要および構成
	1.	1	研究概要
	1.	2	執筆分担
2.		研究	究のすすめ方
	2.	1	高温高圧下での相平衡の研究法
	2.	2	高温高圧下での単結晶育成法
	2.	3	浮遊帯域溶融装置
	2.	4	超高温構造解析技術の確立
3.		高」	王型帯域溶融装置の設計, 試作
	3.	1	装置設計上の問題点
	3.	2	予備実験の方針
	3.	3	試料の熱損失量に関する模型実験······35
	3.	4	光源から試料へのエネルギー移動効率
	3.	5	光学系によるエネルギー集中量の上限40
	3.	6	試料の熱損失と光学系の構成
	3.	7	耐圧容器の構成
4.		超了	高融点物質の単結晶育成と相平衡研究45
	4.	1	B-C 系の相平衝と B ₄ C 単結晶の育成45
	4.	2	ZrO ₂ -Ln ₂ O ₃ 系の相平衝
5.		多周	式分系の相平衡研究と単結晶育成51
	5.	1	緒 言51
	5.	2	MgO-Yb2O3-Fe2O3 系の相平衝
	5.	3	YbFe ₂ O ₄ 単結晶の育成
	5.	4	YbFeMgO4 単結晶の育成
6.		今征	後の問題点
	6.	1	緒 言
	6.	2	温度差帯域溶融機構
	6.	3	比重差に起因する物質移動

6.	. 4	融剤法による単結晶育成時に見られる重力効果61
7.	研究	究成果
7	. 1	発表論文
7	. 2	試料提供
7	. 3	特許出願

1 研究概要および構成

1.1 研究概要

本研究は,現時のエネルギー関連技術開発の動 向をふまえ,超高融点物質の領域における新しい 耐熱無機材料の開発と,既知有用材料の実用化の 促進を目的とするもので,下記の研究課題を含 む.

- 高温高圧型帯域溶融炉(3000℃, 200気圧)
 の開発.
- (2) 上記装置を利用した高融点物質の相平衡研究,相図作成,及びこれに基づく系統的な物質探索。
- (3) 同じく上記装置を用い、かつ相平衡研究の 知見に基づく高融点、高揮発性物質の単結晶 育成技術の確立.
 (当面 Li₂O, SnO₂, SiC, PbMo₅S₈ 等を予 定).
- (4) 高ガス圧ホットプレス焼結装置(2500℃, ガス圧1000気圧,もしくはガス圧300気圧と プレス圧1000気圧の併用)の開発.
- (5) 上記装置を用い,かつ前記相平衡研究の知 見を援用した超高温耐熱セラミックスの焼結 技術の確立。

(Si₃N₄, AlN, サイアロン, SiC 等).

(6) 超高融点物質単結晶及び耐熱セラミックス の特性測定.

(構造,不純物,欠陥,熱的性質,機械的性質,電気的性質,耐蝕性等).

(7) 上記諸データのファイル化.

材料はあらゆる科学技術の基盤であるが,中で も最近,特に緊急性の増大しているエネルギー関 連技術は,材料への依存度が極めて高い.原子力 のエネルギー的利用や,省エネルギーのための熱 源高温化の傾向は,材料に対し,耐熱性,高温強 度,耐熱衝撃性,耐酸化性,耐蝕,耐放射線など の諸点で,極めて苛酷な要求を課してきている. このような要求に応える材料の多くは超高融点物 質の領域に知られており,これにはマグネシア,

ジルコニア、トリヤなど古くから用いられている

酸化物系の耐熱材料のほか,炭素や炭化ほう素, 炭化けい素,窒化けい素などの,現在特に注目を 浴びつつある軽元素主体の高温耐熱材料,さらに チタン,ジルコニウム,ニオブ,タンタル,タン グステン,モリブデン等Ⅳ~Ⅵ族の高融点遷移金 属とその炭化物,窒化物,けい化物などが含まれ ている.いわゆるエネルギー関連材料として,原 子炉材,制御材,核融合炉の第一壁材及びそのコ ーティング材,高温ガスタービン用部材,熱交換 器用材,MHD 発電用電極及び絶縁壁材,熱電子 及び電界放射電子材料など,原子力開発,新エネ ルギー開発,省エネルギー技術開発などに必要な 種々の材料を顕在的あるいは潜在的に包含する領 域である.

しかしこの領域はまた,材料科学において最も 未開発の領域でもある. この領域の物質の多くは 天然に産出せず、研究試料は人工的に合成しなけ ればならぬ. 超高融点物質に共通する特徴は、融 点附近で蒸発が活発化することで、しかもそれは 多くの場合試料組成に変化をもたらす選択的蒸発 である.物質によっては融解を経ずして分解,気 化してしまう場合もある.従って、これらの物質 の単結晶育成や焼結を可能にするためには、少く とも必要時間中蒸発や分解を抑制して、融体ある いは焼結体を組成的に一定に保つ必要がある。即 ち, 超高融点物質の焼結や単結晶育成には, 極め て高い温度に加え、制御された高圧雰囲気を必要 とし,この技術的困難のため,良質の単結晶,高 強度の焼結体が極めて得難い現状である. 容器の 問題も極めて重大である. 超高温の融体を何等か の容器に保持するためには、そのような高温にお いてもそれ自体溶融せず、かつ試料融体と全く反 応しない材料が必要であるが、2000℃を超える高 温条件下でこのような材料を求めることは不可能 である.従って結晶育成や相平衡研究は、この種 の容器を必要としない方法によって行われねばな らぬ.

単結晶育成および焼結技術に学理的基盤を提供 するのは相平衡研究である.相平衡研究は同時に また系統的物質探索の最も確実な実際的手段でも ある.しかし,超高融点物質系の固相一液相一気 相間の平衡状態をもたらし,その状態を観測記述 することの技術的困難さは,単結晶育成や焼結に おけるそれを更に上回るものであることは明らか で,高温領域における材料研究の進展をはばむ最 も重大な障壁になっていると考えられる.

本章の冒頭に挙げた研究課題の大部分は、上述 のような高温材料科学の進展をはばむ障壁に対す る技術的な挑戦とも言えるものである. 例えば相 平衡研究手段としては、試料を保持する容器やカ プセルを必要としない, 浮遊帯域徐冷法と言う全 く新しい方法が試みられる.単結晶育成において は、 試料物質の多くが非導電性のものであるため, 加熱源として赤外線を用いるが、赤外光源を高圧 容器に組入れると言うことは、これまでに例のな い新しい試みである. キャラクタリゼーションで は、結晶構造の1500℃以上における"その場観 察"技術の確立が目指されるが、この方面の前例 は過去に1500℃におけるものが一,二例報告され ているのみである. また, 焼結部門が 試 みる. 2500℃, ガス圧1000気圧, プレス圧1000気圧の組 合せも,目標条件の苛酷さと創意の両面において 画期的である.

これらの技術はいずれも未踏の極限技術に属す ものであり,一般的に言って極めてリスクの高い 研究である.従って研究担当者としては,単に創 意や冒険的意欲に頼って実施に踏み切るのではな く,周到な理論的検討と予備実験によって,計画 の現実性を確かめる努力を傾倒する必要がある. 本研究は,昭和55年度から発足したが,研究計画 の基礎資料は,当研究所における長期にわたって の当該技術の涵養と,主として前年度に行われ た,細目に及ぶ理論的及び技術的検討の結果得ら れたものである.本報告書では,主として相平衡 研究,高温高圧型帯域溶融炉の設計,単結晶育成 技術,及び特性測定の一部である結晶構造のその 場観察技術等の単結晶関連技術についての,それ ら予備実験及び理論的検討の結果を報告する.

1.2 執筆分担

1章	後藤 優	
2章	2.1~2.3	進藤 勇
	2.4	岡村富士夫
3章	広田和士	
4章	進藤 勇	
5章	進藤 勇	
6章	進藤 勇	

-2 -

2. 研究のすすめ方

2.1 高温高圧下での相平衡の研究法

(浮遊帯域徐冷法による相平衡研究法)

2.1.1 緒 言

"新物質の探査"を一つの命題とする相平衡研 究は時として一連の新物質群の発見につながるな どして,注目を浴びることもあるが,一般的に は,結果を得るまでに多大の時間と労力を必要と するため,労苦の割には報いの少ない分野と思わ れてきている.特に,結晶育成に重要な役割を果 すべき液相線を含む相図作製はとりわけ困難さが 増加し,化合物の存在は知れても,それらの融解 性状を調べる余裕がない場合が多いようである. それでも,今世紀初頭,米国,地球物理学研究所 で急冷法が確立されて以来,数多くの系で,地道 な研究が間断なく続けられてきており,金属,鉱 物,セラミックスに関連した多くの研究が発表さ れ,他の種々な分野の研究の進展にも寄与してい る.

急冷法は相平衡研究にとって、これまで最も多 く利用され、最も多くの有用な結果を与えてきた 方法であるが、この方法はルツボ等の容器を必要 とするから、ルツボの耐熱性、ルツボと雰囲気と の反応、ルツボと試料との反応等、種々な点で制 約が生じ、特に2000℃を超えるような高温領域で は、急冷法は適用不能といっても過言ではない.

最近,浮遊帯域徐冷法 (Slow Cooling Float Zone, SCFZ Method) と命名された新しい相 平衡研究法が無機材質研究所において確立され た¹⁾. この方法は,Bowen²⁾が確立した,分別結 晶作用 (fractional crystallization)のうち,最も 液と析出固相との反応が少ない最大分別 (maximum fractionation)を実験的に実行可能なもの とし,これによって,相平衡図を迅速かつ正確に 得ようとするものである.この浮遊帯域徐冷法 は,浮遊帯域法による分解融解化合物の単結晶育 成研究から生まれた方法で,試料調製,溶融固化 実験,固化試料のキャラクタリゼーション等,全 てにわたって単結晶育成の手法を応用している. 浮遊帯域徐冷法はルツボを必要としないこと,測 温の誤差が結果に余り影響を与えなこと等,数多 くの利点を有しており,特に,本特別研究のよう に,超高融点物質を含む系の相平衡研究には,と りわけ有用さが発揮される.

ここでは、これまでの相平衡研究法の発展の流 れを振り返えると同時に、この新しい浮遊帯域徐 冷法の理念と、この方法を用いて MgO-TiO₂系 の相平衡について調べた結果を中心にして、この 方法の利点、欠点について考察する.

2.1.2 相平衡研究法の流れ

相平衡研究法は数多くの方法が提案されている が、大別して、スタティック法とダイナミック法 の二つに分類される³⁾. スタティック法は, 任意 の温度において、系が完全に平衡状態に到達する まで保持し、その時の状態を基にして 相図を得 ようとするものであり、 急冷法 (quenching method)と分別法 (fractionation method) はそ の例である. ダイナミック法は, 温度, 圧力等を 変化させ、その変化に伴う状態変化を観察して相 図を得ようとするもので、熱分析法などがこれに 含まれる. この方法は、例えば、一定の速度で温 度を上昇させ,又は徐冷しながら,試料の発熱, もしくは吸熱温度を測定して相変化を知ろうとす るものであり、温度の上昇速度を大きくすれば、 状態変化の識別が容易となる一方で変化温度の測 定に誤差が生ずる.したがって,できるだけ上昇 速度を遅くすることが望ましいが、遅くしすぎる と、わずかな変化量を見逃すおそれが生ずる、試 料の冷却曲線を測定して相関係を調べる方法も行 われているが、実験精度を上げるには、かなりの 困難さがあるように思われる.

急冷法は, 試料が少なくてすむこと, 再現性に すぐれていること等があり, これまで最も基本的 な相平衡研究法として多くの系に適用されてきた

- 3 --

が、この方法は、特に液相線を含む高温領域での 相平衡研究にとっては、不利な点がある.その第 一は、ルツボ等の容器を使用せざるを得ないか ら、ルツボの耐熱性、ルツボと雰囲気、又は試料 との反応等を考慮しなければならず、実験的な制 約が多いことである.第二には、この方法は正確 な融点測定を必要とするが、高温領域では実験的 に困難さが増加し、2000℃を超えるような超高温 領域では事実上適用が難かしいこと、等があげら れよう.

そこで、急冷法の代りに、もう一つのスタティ ック法である分別法を用いた相平衡研究法の開発 にも力が注がれてきた.

高温遠心分離法(high-temperature centrifuge method) もその一つである. この方法は Newkirk⁰ らによって開発された方法であるが,任意 の温度において,ルッボ中に固液共存状態を形成 させ,この固相と液相とを分離し,それぞれの組 成と量を測定して相図を得る方法である. したが って,この方法は,試料の融解性状を調べるには 好都合な点もあるが,容器,フィルター等の材料 の選択が困難であり,また,液相の粘性が高い系 では適用が難かしく,種々な実験装置が試作され ているが⁵⁰ この方法で成功を収めた例は少ない.

Bowen⁶⁾は、分別結晶作用(fractional crystallization)と相平衡との相関性を明らかにし、 反応原理(reaction principle)を確立して、地球 科学で大切なマグマの融解、結晶化に際し、この 分別結晶作用を考慮することの重要性を指摘して いる.これは、任意の組成物の融解、もしくは結 晶化に際して、生じた液相、又は固相が何らかの 理由で反応系外に出されると、その程度に応じ て、平衡系で得られるものとは異なる結果がもた らされる可能性を示している.

例えば,結晶化に際して,生じた固相が液との 密度の違いのため,浮上したり,沈殿したりして 堆積し,液との反応が抑止された場合である.ま た,系の温度が急激に下がり,固相内部の拡散が 間に合わず,表面に反応縁が形成されて,固相内 部と液との反応ができなくなった場合にも分別結 晶化が生ずる.

したがって,分別結晶作用には,系から取り去 られる固相の量,反応時間,等の程度に応じて無 限の反応系が生じ得る.

4 -

Bowen は、無限にある分別結晶化過程の中 で、最も分別の完全な系、即ち、晶出した固相と 液との再反応が完全に抑止されているような条件 下での結晶化を最大分別(maximum fractionation)と呼んだ.最大分別結晶作用は、液相から の固相の析出のみが一方的に継続されることを意 味するから、このような条件下で得られた固相の 析出状況は完全に相平衡図を反映したものになる 筈である.

ところで、上述の分別結晶作用は、平衡系では 発生しない反応であり、非平衡下でのみ生ずるか ら"平衡状態"を表わす相平衡図との対応はつか ず、相律にも合わないと理解され、分別結晶化が 生ずるような実験条件下で得られた結果は、非平 衡下での結果であるから、相平衡研究には使えな いと思われているふしがある.このことは、分別 結晶作用と相平衡図との相関についての単なる認 識不足からくるものばかりでなく、これまでは、 最大分別結晶作用を理論通りに正しく、かつ再現 性よく実行できる実験方法が確立されていなかっ たためと思われる.

この分別結晶化作用を用いて相平衡を研究する 実験法を最初に提案したのは Tiller⁷⁾ である.

Tiller の考え方は、ノーマルフリージング (normal freezing, 但し, 彼は controlled solidification という用語を用いている。)を用いる方 法であって、帯域溶融法による精製法を確立した Pfann⁸⁾も同様な考え方を述べている.

図1に、ノーマルフリージング、もしくは、一 方向凝固と呼ばれている機構の概念図を示す。一 方向凝固の場合には、液相と固相とが界面を境に 完全に分離されており、この界面がゆっくりと移 動する形で系の凝固が進行することを意味する。 このとき、液相は撹拌されて、均質な濃度になっ ており、液相中での結晶化や、固相中への液相の 取り込みはないものとされる。

まず調べようとする任意の組成の円筒状の液相

を形成させ、これを一方向凝固によってゆっくり と結晶化させる.このとき、液相を完全に撹拌し ながら、何らかの方法で固液界面の位置と温度を 正確に測定して記録しておけば、全ての液相が固 化した後で、組成と位置の関係を調べ、これを用 いると温度と組成の関係が知れることになり、固 相線、液相線が知れることになる.このとき、系 が満足すべき条件として次の三つがあげられる.

- (i) 固相と液相は固相の成長が継続していて も,その界面において平衡共存していると みなせること.
- (ii) 固相内では拡散による成分変動がないこと.
- (iii) 液相は完全に撹拌されており,液相の組 成は均質とみなせること.

Tiller 等は、この考え方に基づいて、 Bi_2Te_3 — Bi_2Se_3 二成分系の相平衡について検討している i^{sy} 結果ははかばかしいとは言えないようであ る. それでも、この方法は二元、ないし三元系合 金の共晶組成を決定する方法として使われ、かな りの成功を収めている^{10~122}.

以上述べてきたように、分別結晶作用を用いた 相平衡研究法は、他の方法に比べて格段にすぐれ ている筈であるが、実際には、この方法はこれま で余り用いられておらず、成功例も少ない.この 理由について Pfann は、次の2つをあげてい る⁸⁾.(1)固液界面の位置と組成を相関させて測定 することが困難であること.(回液は常に均質でな ければならないが、通常の円筒状容器を用いる帯 域溶融法では、液を撹拌することが難かしく、均 質になり難い.

さらにつけ加えるならば、当時は、固体試料の 細かい部分毎の定量分析法が確立しておらず、実 験結果の解析法が十分でなかったために、相平衡 図との詳細にわたっての対応関係がつけられず、 徴少部分の分析を必要としない共晶組成の決定等 に適用を限定せざるを得なかったものと思われる.

このような状況にあって、固体試料の組成分析 装置として EPMA (Electron Probe Micro Analyzer)装置が開発された意義は大きい.この 装置は、電子線を照射して、試料から発せられる 特性X線を測定して、未知試料の組成を知る装置 であり、電子線径を細くすることによって、数μ m以下の微少領域の組成が定量的に分析できる画 期的な装置であった.

久城¹³は、急冷法による相平衡研究を行う際、 従来の方法によるデータに、EPMA を用いた急 冷試料の組成分析データを附加して、より確度の 高い相平衡図を得る方法を提案し、 Mg₂SiO₄-Ca MgSi₂O₆ 系の相平衡について調べている.

一方,浮遊帯域溶融法の発展は,材料科学研究 に新しい可能性を提供し,また,新しい相平衡研 究法を可能にしたもう一つの要因である.浮遊帯 域溶融法においては,融体は試料自身に融体の表 面張力を利用して保持されているから,ルツボ等 の容器を用いなくてすむ.したがって,ルツボを 使用する場合の種々な実験的制約,温度,雰囲 気,反応等から解き放たれる.さらには,形成さ れる融帯は上下の支持シャフトを逆に回転するこ とによって撹拌することができるから,融帯の組 成を均一に保つ上で効果がある.

以上のような背景から、新しい相平衡研究法 として、浮遊帯域徐冷法は誕生した. この方法 は、任意の組成の出発原料を棒状に成型し、これ をイメージ炉等を用いて融解し、浮遊帯域を形成 させる.形成された融帯は、最大分別結晶作用に よって固化され、得られた固化棒中の組成分布は EPMA 装置によって細かく測定され、これによ って相平衡図を得ようとするものである.各結晶 化の過程での温度測定が困難な場合には、これを 後回しにして、概略の相図を得た上で、これに基 づき、必要な組成物の融点測定結果を加えて完全 な相平衡図とするものである.これによって,従 来の方法よりも格段に迅速、かつ正確な相平衡研 究が可能となった.

2.1.3 浮遊帯域徐冷法の原理

浮遊帯域徐冷法(SCFZ 法と略記)による相 平衡研究法の原理は, Bowenによって確立され た,最大分別結晶作用(maximum fractional crystallization)を利用したものであり,Tiller, Pfann等によって提案された一方向凝固法と基 本的な考え方は同じである.しかしながら, SCFZ 法においては,Tiller等の方法の有する 実験的な制約,困難さを避けるために,いくつ かの工夫が凝らされている.第1は,ルツボ等, 容器を使用することからくる温度,雰囲気等の制 約から逃れるために浮遊帯域溶融法を用いるこ と.第2は,温度測定の困難さを避けるために,

- 5 -

図2 分解融解化合物を含む2成分ボ A-B の模式的相図.

まず組成分布分析結果から温度軸に関しては仮想 的な相平衡図を作製し、これに基づいて、必要な 組成の試料について融点測定を行ない、相平衡図 として完成させること等である.

次に,最大分別結晶作用によって,結晶化がど のように進み,それが相平衡図とどのように対応 するか考えてみよう.

図2は、分解融解化合物 $C(S_2)$ を含む A-B二成分系の模式的な相平衡図である. 図2におい て、P点の溶液(組成 C_1 ,温度 T_1)を冷却して 固化させることを考えてみよう.この溶液は温度 が T_2 まで下がると液相線に達するので、 S_1 なる 固相(A)を析出する.温度の低下につれて、固相 S_1 の析出が進行し、残された溶液の組成は、固 相の析出につれて右側にづれて行く.温度 T_3 ま でこの傾向は続くが、この温度において、分別結 晶作用と平衡結晶作用とでは結果に大きな差が生 ずる.平衡結晶作用の場合には、温度 T_3 におい て、それまでに析出した固相 S_1 と残った液相と の反応が生じて固相 S_2 が形成され、この温度に おいて、液相は完全に消滅し、固相 $S_1 < S_2$ の 混合物が残る.

一方,最大分別結晶作用においては,一度析出 した固相は二度と反応には関与できないから,温 度 T_3 においても析出した固相 S_1 には何の変化 もなく,温度の低下につれて,今度は固相 S_2 が 析出され,残った液の組成は更に右側にずれて行 く.温度 T_3 から T_4 までは固相 S_2 の析出が継 続されるが,温度が T_4 に達したとき,液相の組 成は C_3 ,即ち 共晶組成となっているはずである から、この組成のままで固化して、全ての液相が 消滅する.したがって、最大分別結晶作用によっ て固化した試料には、まず S_1 、次いで S_2 、最後 に $S_2 \ge S_3$ (平均組成 C_3)の共晶という順序で累 帯構造が形成されているはずで、何らかの方法 で、この組成分布を測定できれば、次のことが判 る.

- (i) 二成分系 A(S₁), B(S₃)の間には, 化合物として S₂のみが存在し, これ以外の化合物は存在しない.
- (ii) 化合物 S₂ は分解融解する.
- (iii) S₂ と S₃ とは共晶を作り、 共晶組成 は C₃ である.

そこで、最大分別結晶作用によって固相が析出し ているときの固液界面の位置と、その温度変化を 測定しておき、この結果と上述の組成変化と位置 との関係から、温度と組成の関係をプロットする と、相平衡図が得られる.図2のような場合に は、1回の最大分別結晶化実験によって相関係が 知れることになる.

図2の包晶点(組成 C_2)を決めるには、 析出 した固相の量を測定し、次の式から求める.

 $C_2 = (\rho_0 V_0 C_1 - \rho_1 V_1 C_{S_1})/(\rho_0 V_0 - \rho V_1)$ …(1) ここで ρ_0 および V_0 は固化開始前の液相の 密度 と量を示し、 ρ_1 および V_1 は析出した固相 S_1 の 密度と量を示す. 但し、液相と析出した固相の密 度にそれほどの相違がなければ $\rho_0 \Rightarrow \rho_1$ として、

- 6 -

次のように簡便化してもよい.

 $C_2' = (V_0 C_1 - V_1 C s_1) / (V_0 - V_1) \cdots (2)$

 V_0 および V_1 は、後で述べるように、 試料が 部分融解している場合がほとんどであるから、実 験的に正しく算出することは難しい. C_2 の 値を 正確に決める必要のあるときは、(2)式に従って算 出しただいたいの C_2' の値を基に、 これから A 側、および B 側にずらせた組成を出発組成とし て同様に最大分別結晶化実験を数回行い、初晶と して、 S_1 が 析出してこなくなる組成を決め、そ れを C_2 とする.

次に固溶領域が存在する場合について考えてみ よう.図3に、固溶領域が存在する二成分系の模 式的相図を示す.図3において、P(組成 C₁,温 度 T₁) で表わされる液を冷却して行くと温度 T₂ で液相線に達し、組成 SS, なる固密体を 析出 す る. 続いて温度が下がると, 平衡結晶過程の場合 には, 析出した固溶体は液と反応して, より B成 分に富んだ固溶体を形成するが、最大分別結晶化 過程の場合には、

析出した固相と液との反応は生 じないから、温度の低下につれて、次々と一方的 に固相の析出が継続され、析出してくる固相の組 成は、固相線にそって、次第にBの固溶量の多い ものとなっていく. 温度が T₃ まで下がったと き,液相の組成は C₂ になっているから,この共 晶組成のままで固化し、液相は消滅する. したが って、この場合には、固化試料中には、後で析出 した部分ほど固溶量の多くなっている固溶体領域 と共晶組成領域の累帯構造が形成されていること になる. 共晶領域に接している部分の組成が固溶 限界を示すことは自明であり, 一般に他の急冷法 等では決定が困難と言われている固溶領域の存在 と,その限界値の測定が極めて容易に,かつ正確 に行えることが理解されよう.

もし、図3に示すように、サブソリダス領域に おいて、固溶量が減少する、即ち、離溶反応が生 じて、ソルバスが形成される場合には、固化試料 中に、離溶によって形成された特徴あるラメラよ うの析出物が観察されるはずであるから、これの 存在も容易に知れる. なお、EPMA 装置を用い ての組成分析の結果、析出相の固溶領域の存在が 知れたら、この試料を適当な温度で再度アニール し、ソルバスの存在の可能性を確かめることも必 要である. 今回の MgO-TiO₂ 系の場合のよう

に、得られた固化棒中に、離溶組織が認められる 場合は問題ないが、離溶には時間のかかるものが あり、SCFZ 実験のみでは時間の不足から、ソル バスの存在を見逃す恐れがあり得るからである.

次に,浮遊帯域溶融法によって,最大分別結晶 作用がどのようにして実現されるかを述べる.

図4は、浮遊帯域溶融法によって形成される試料と融体の構成(A)及びそのときの概略の温度分布、そして SCFZ 法によって融体が固化したときの固化棒の状況(B)を示す.ここで重要なことは、浮遊帯域溶融法においては、図のように、融体部の最高温度部を中心に、ここから離れるにつれて急激に温度が下がり、大きな温度勾配が形成されていることである.これによって、液体と接している固体よりもわずかでも離れた固体は、その温度が液体と接している界面温度よりも低くなっていて、液体との反応には関与できない.即ち、最大分別結晶作用のメカニズムが形成されていることになる.

一般には、分別結晶作用は、系の温度が急激に 下がり、析出固相と液相との反応時間が平衡に達 する余裕のない場合に起こるとされているが、 SCFZ 法においては、急激な温度勾配の存在によ って、分別結晶作用が実現されているから、固液 界面の温度を急激に下げる必要はなく、どのよう にゆっくりと下げても分別結晶作用は維持されて いる.

- 7 -

温度勾配を図4の状態に保ったままで,系の温 度をゆっくりと下げて行く、温度の低下に伴なっ て,晶出する固体は,上下の原料棒上に積もる. 即ち,結晶の育成が行われる.この間,上下のシ *フトによって, 試料棒には互いに逆向きの回転 が与えられ,融体の撹拌が行なわれている.融帯 の長さは、試料の密度、粘性等によって変わる が、大略、試料棒の直径と同程度に維持する.温 度が下がるにつれ,融体の固化が進むと融帯の上 下方向の長さが不足し、安定な浮遊帯域が形成さ れなくなるから、上下のシャフトをゆっくりと切 り離し、常に融帯の直径と上下方向の長さが同 程度となるよう,切り離し速度を調整する.こう して、全ての融帯が固化したとき、図4(B)に示す ように先端のとがった固化棒が得られることにな る.

出発原料の組成を図2の C_1 としたとき, SCFZ 実験によって得られた固化棒中には図4(B)に示す ような累帯構造が形成されているはずであるか ら,これを EPMA 装置を用いて組成分析を行な えば、これから相平衡図に関する知見が得られる ことになる.但し、図4(B)の S_1 領域は、実際に は部分融解によって形成される固液共存状態から の固化部分であるから、より複雑な組織が形成さ れるが、これについては後で詳しく述べる.

融帯からの固化が行なわれている間に、固液界 面の温度が、固液界面の位置の関数として正確に 測定されていれば、上述の EPMA 装置を用いて の組成分布の測定結果と、この測温データを対応 させることによって、相平衡図が得られる.しか しながら、この固液界面の温度を測定すること は、実際には極めて難かしく、現状では、正確な 温度測定は不可能に近い.そこで、SCFZ 法にお いては、この固液界面の温度測定の困難さから逃 れるために、次のような二段構えの便法を用いる ことにした.

まず, EPMA 装置を用いての組成分布分析結 果を仮想的な温度軸に対してプロットして, 仮想 的な相図を作成する. この相図は, 温度に関して は全くの仮想であるが, 組成に関しては正しい実 測値である. 次に, 仮想的な相図を実際の相図に 変換するのに必要な温度測定のための試料組成を 仮想的な相図から選び出し, これらについて, 示 差熱分析法等, 適当な方法を用いて, 融点測定等 を実行する.

上述の融点測定操作は、急冷法、DTA 法等, これまでの相平衡研究法で用いられてきた方法と 同じ操作をすることになるが、SCFZ 法の場合に は、既に、仮想的ではあるが、概略の相図が得ら れているから、温度測定が必要な試料数は格段に 少なくてすむ.また、特殊なケースとして、互い の融点にほとんど差がなく、狭い温度範囲に複数 個の分解融解化合物の部分融解開始温度が接近し て存在する場合であっても、SCFZ 法による固化 棒中の固相の析出順から、それぞれの固相の融点 に関する高低順も判っているから、たとえ、融点 測定に際して誤りがあっても、容易にその誤りが 認識されるから、誤った相平衡図が与えられるこ とはない.

後に実験の項で述べるように, SCFZ 法におけ る固液界面の移動速度は大略 1 mm/hr 程度であ るから,試料棒の径を5 mmとしても,この試料 棒に形成される融帯の長さを5 mmとして,5~ 6時間程度で固化が終了する.したがって,固化 試料の切断,研磨, EPMA 装置を用いての組成 分布分析,限定された試料についての融点測定等 を含めても,SCFZ 法による相平衡図作製はきわ めて短時間に終了することが理解されよう.

2.1.4 実 験

(イ) MgO-TiO₂ 系

 $MgO-TiO_2$ 二成分系の相平衡に関しては、これまでにいくつかの報告がある.

Coughanour および DeProsse¹⁴⁾は、この系に は空気中で三つの化合物, Mg₂TiO₄, MgTiO₃, MgTi₂O₅ が存在することを見出したが、彼ら は、この三つの化合物はいずれも調和融解すると 報告している. 一方, Massazza および Sirchia¹⁵ は,この系の各割合に調合した試料を部分融解さ せ、急冷した試料中に見られる結晶相を分析し て、Mg₂TiO₄ と MgTiO₃ の二つは分解融解す ると報告した. これら二つの報告が、Mg₂TiO₄お よび MgTiO₃ の融解性状について、全く相反し ているため、後に Woermann および Muan 等16)は、急冷法を用いて再度この系の相平衡を調 べ、1200点を超える膨大な実験データを基に、 Mg₂TiO₄, および MgTiO₃ はいずれも分解融解 すると結論づけている.これまでに報告された二 つの相図を図5に示す.

- 8 -

図5 MgO-TiO₂2成分系について報 告されている相図; (A): Coughanour 等¹⁴⁾, (B): Massazza 等¹⁵⁾に よる.

一方,浮遊帯域溶媒移動法によって育成された MgTiO₃単結晶は焼鈍することによって光彩を放 つことが見出された¹⁷⁾.一般に,このような光彩 の発生する原因は,離溶によって形成されたラメ ラによる光の干渉に起因すると考えられている. したがって,離溶をもたらす固溶領域が存在して いなくてはならないが,これまでの相平衡研究の 結果では,固溶領域の存在はわかっていない.

(ロ) SCFZ 実験

出発物質として酸化マグネシウム, MgO (純 度 99.9%, 米国 Marincrodt 社製), および酸化チ タニウム, TiO₂ (純度 99.9%, 高純度化学㈱製) を使用し, それぞれモル比で3:1, および1: 5になるよう, 秤量して湿式混合後, 乾燥し, ゴ ム袋につめて1,000 kg/cm² の水圧下でラバープ レスして径 8 mm, 長さ 100 mmの丸棒状試料棒 に成型した. 成型品は空気中, 1500℃で焼結し, 出発組成棒とした.

試料の融解, 固化実験には, ハロゲンラン プを使用した単楕円型の赤外線集中炉を使用した¹⁸⁾.

焼結棒を2つに折り、1本は装置の下側シャフ トに,残りの1本は上側シャフトに取り付けて、 両者の先端部を溶かして接合させる。雰囲気は空 気を使用した.溶融部分の長さと幅が大略同じ程 度になるようにランプ印加電圧を調節する.上下 の焼結棒支持シャフトを互いに逆に 30 rpm の速 度で回転させて溶融部の撹拌を行なった、シャフ トの回転は、水平面での均熱性を向上させる効果 もある. 接合後,約30分間放置し,次いでランプ 印加電圧をゆっくりと下げながら、上下のシャフ トをゆっくりと切り離す. このとき, 固液界面の 移動速度が 1 mm/hr 程度になるよう, ランプ印 加電圧の下降速度と上下のシャフトの切り離し速 度を調節した.約5時間後,液相が全て固化した とき, 先端が細くとがった固化棒が, 上下に1本 ずつ得られた.

得られた固化棒は,長さ方向に二分割し,切断 面を研磨した.研磨面は光学顕微鏡, EPMA を 用いて組成,組織,構造変化について調べた.

液相線、固相線の温度を決めるために、カーボ ン発熱体を用いたタンマン炉を使用した.融点測 定に使用した試料は、Mg₂TiO₄, MgTiO₃, Mg Ti₂O₅, TiO₂ の各単結晶であり、これらはいずれ も浮遊帯域溶融法によって育成されたものを使用 した.また、共晶組成の試料は、今回の浮遊帯域 徐冷法によって得られた固化棒の先端部から分離 したものを使用した. $1 \sim 2 \text{ mm}$ 角に切断した試 料を白金-ロジウムワイヤーで吊るし、電気炉中に 30分間保持した後、引き上げて急冷し、試料の融 解状態を観察して、融解開始温度、全融解温度を 測定した.温度測定には 94 Pt 6 Rh-70 Pt 30 Rh 熱電対を使用し、検定はパラジウム(融点1554 C) を用いて行なった.

2.1.5 結 果

(イ) 出発組成MgO:TiO₂=3:1 の場合

1回の SCFZ 実験によって、2個の固化試料 が得られる.得られた固化試料を長さ方向に2分 割し,研磨した試料を図6に示す.理想的には、 2個の固化試料は全く同じ大きさ,同じ形状にな るべきであるが、実際には重力の影響を受けるか ら,下側に固化した試料の方が若干大きめにな る.この図からも分かるように、固化試料ははっ きりした累帯構造を形成している.

図7は、位相差顕微鏡による拡大図を示してい

 図6 SCF 実験によって得られた固 化棒の断面図.(出発組成; 3 MgO・TiO₂). 左は上側,右 は下側に固化したもの.

図7 図6の先端部の拡大図(ネガテイブ反射位 相差顕微鏡)

図8 図7の第2領域の拡大図.析 出物は MgO.

図 9 SCFZ 実験後の固化棒の
 透過偏光顕微鏡写真(ク
 ロヌニコル)

る. 固化試料は5つの相異なった領域から形成さ れており,第1領域は始めの焼結棒のままで,融 解していない部分,第2領域は,部分融解して, 共存する固相と一緒に固化した部分,第3領域 は,第2領域のマトリックスが単相として固化し た部分,第4領域は別の成分が単相として固化し た部分,第5領域は典型的な共晶領域を示してい る.

第8図に,第2領域の拡大図を示す. 白い縁を 有する円型の部分は焼結体の融解に伴って混入し た気泡であり,白い縁は位相差顕微鏡による光の 干渉効果によって生じたものである. マトリック ス中に,気泡の他に,小さな結晶片が混在してい るのが見られるが, EPMA による同定の結果, 結晶片は MgO,マトリックスは Mg₂TiO₄ 成分 であることが判った.

第3,および第4領域は反射顕微鏡で観ると, 単相で第3領域は Mg_2TiO_4 ,第4領域は MgTiO₃ 組成であった.第3および第4領域の境界 は反射顕微鏡では区別がつけ難いが,薄片に研磨 した試料を偏光顕微鏡で観察すると,図9に示す ように,第3領域は完全に消光し,第4領域と は,はっきりと区別できた.この図における第4 領域の輝きが,第5領域との境界に近づくにつれ て減少しているのは,次に述べる細かな析出物に 起因するものと考えられる.

図10は、第4および第5領域の境界附近の拡大 図を示す.第4領域中には、細かな線状の析出物 が見られる.その析出物の幅は、第5領域との境 界に近づくにつれて大きくなり、数も増えている ことが分かる. EPMA を用いてこの領域の組成 を調べると、TiO₂の含量が第5領域との境界に

図10 図7第4領域の拡大図.線状にみえる析 出物の幅と数は第5領域との境界に近づ くにつれて増加している.

図11 固化棒の先端部にみられる共晶組織

近づくにつれて増加していることが分かった.析 出物の形状と分布状態を観ると,各粒子内では, この線状析出物の方向性に規則性があり,明らか に母結晶の構造の規制を受けていることから"離 溶"によるものであると考えられる. このこと は,この試料を1400℃に12時間保持後,急冷する と,この離溶によると思われるラメラ状析出物が ほとんど消滅することからも裏付けられた.

析出物の組成は、 ラメラの 幅 が 細 い た め, EPMA による定量ができなかったが、 相図から MgTiO₃ と TiO₂ の間に, MgTi₂O₅ が化合物と して存在することから、析出物の組成もこの Mg Ti₂O₅ であると考えられる. なお、全体の組成変 動について EPMA で調べた結果、 MgTi₂O₅ の MgTiO₃ 相への固溶限界は空気中では約3 モル% であることが分かった.

図11は、第5領域の拡大図であり、典型的な共 晶組織を呈している.共晶組織を形成するラメラ の幅はほとんど同じであるが、先端部では太くな っていることがわかる.これは固化速度を変化さ せ、先端部は極めてゆっくりと固化させたことに よる. EPMA を用いて、個々のラメラの構成相 と、全体の平均組成、即ち、共晶組成を決定する には、次のように行なった.

まず, 個々の構成相の同定は比較的細い電子線 ビーム(約3 μ m)を用い, 試料先端部の比較的 幅の大きい領域で行なった. その結果, ラメラ は, MgTiO₃ と MgTi₂O₅ 相とから構成されて いることが分かった. このことは, 第5領域の粉 末X線回析によっても確かめられた. 一方, 全体 の平均組成は, 逆に太い電子ビーム径(約50 μ m) を用い, ラメラの幅の狭い領域で調べ, MgO: TiO₂=39:61(モル比)であることが判った.

以上の結果から,次のことが明らかとなった.

- (1) 固相としては、MgO、Mg₂TiO₄、MgTiO₃、 および MgTi₂O₅ が存在する. MgO-Mg Ti₂O₅ 間には、これ以外の化合物は存在しな い.
- (2) 固相としての析出は、MgO、Mg2TiO4、 MgTiO3、次いで MgTiO3 と MgTi2O5 の 共晶の順で生ずる.
- (3) したがって、 Mg₂TiO₄、 および MgTiO₃
 は分解融解化合物である。
- (4) MgTiO₃ は TiO₂ 側に固溶領域が存在し,
 その固溶限界は約3モルパーセントである.
- (5) MgTiO₃ 固溶体は、サブソリダス領域に おいて、離溶現象を呈する.
- (6) MgTiO₃ と MgTi₂O₅ の間には共晶があり、その組成は、39:61(モル比)である.
- (ロ) 出発組成, MgO:TiO₂=1:5 の場合.

この場合も、(イ)と同様にして SCFZ 実験を行 なった結果,次のことが分かった.

- TiO₂ と MgTi₂O₅の間には化合物は存在 しない.
- TiO₂ と MgTi₂O₅ は共晶を形成し、その 組成は24:76(モル比)である.

(1) および(ロ)の 2 回の SCFZ 実験によって得ら れた結果を図示すると、図12のようになる.

この図は, SCFZ 法の原理の項で述べたよう に,温度に関しては実測データは全くないが,相 の存在と,それら相互の関係についての基本的な 知見を与えてくれる.

 図12 SCFZ 実験によって得られた MgO-TiO₂ 2 成分系の相図. 但し, 温度 軸は仮想的なものである.

- 11 -

Χ.

第12図を完全な相平衡図とするのに必要な温度 測定については、図から、測温が必要な組成が判 るから、それらについて行なった.

 Mg_2TiO_4 と $MgTiO_3$ 組成のものは, 浮遊帯 域法で育成した単結晶片を用いて融解実験を行な い,これらの部分融解開始温度は,それぞれ1706 ℃,および1660℃であり,また,二つの共晶組成 物の融点については, $MgO:TiO_2=39:61$ のも のは1605℃, $MgO:TiO_2=24:76$ のものは1630 ℃と測定された.これらの結果を図12に加えたも のが13図である.

2.1.6 考察

SCFZ 法によって得られた相平衡図は,これま でに報告されている相図のうち,Massazza およ び Sirchia¹⁵⁾,そして Woerman 等¹⁶⁾によって 報告されているものに大略同じで,Mg₂TiO₄ お よび MgTiO₃ はいずれも分解融解することが いっそう明白となった.さらに,SCFZ 法による 今回の相平衡研究によって,MgTiO₃の固溶領域 の存在と,これのサブソリダス領域における離溶 現象が始めて見出されたことは,このSCFZ 法が 単に, 簡便で,研究時間の短縮をもたらしただけ でなく,これまでの方法では検出が困難と思われ る微細な固溶領域の存在等についても正しい知見 が得られることを示しており,きわめて効率のよ い,かつ正確度の高い相平衡研究法であることを 示している. SCFZ 法によって相図を決定するためには,得 られた固化棒中に観察される多相共存状態の成因 を正しく識別しなければならない.

SCFZ 実験によって得られる固化棒中に見られ る多相共存状態の成因としては,次の4つのケー スが考えられる.

- (i) 部分融解
- (ii) 共晶
- (iii) 離溶
- (iv) セル成長

一方, SCFZ 法においては,融帯は試料棒によ って安定に保持され,試料棒と融帯との反応は防 止されていなければならないが,実際には,融帯 と試料棒との反応,試料棒中における組成変動が 起り得るから,これらに対する認識,対策を構ず る必要がある.安定で定常な SCFZ 実験の継続 をさまたげる可能性のある要因としては,温度の ふらつき,機械的な振動等,装置的な問題の他に, 試料からの蒸発,液相における不混和 (liquid immiscibility)の発生,等があり,更には,温度 勾配にそった成分移動の機構として温度差帯域溶 融機構 (Temperature Gradient Zone Melting) がある.

また液相からの固相の析出に関しては、しばし ば過冷却現象が生じ、このために、実験の再現性 を悪くしたり、時には、初晶領域のみつからない ことなども起こる.以下にこれらの各事項毎に、 その特徴、対策法等について述べる. 基本的に は、浮遊帯域徐冷法は浮遊帯域溶媒移動法(Traveling Solvent Float Zone 法)と同様の実験手 法を用いるから、この方法を用いて行なわれた分 解融解化合物^(17~21)もしくは 均質組成の固溶体単 結晶育成研究^(22~23)によって得られた知見を活用 している.

2.1.6(1) 部分融解に起因する二相共存

SCFZ 法によって、任意の二成分系 A-B の相 平衡を調べようとするとき、出発物質の組成とし てまずは A に B を若干(例えば10モル%)加え たもの、逆に B に A を同程度加えたものを選 び、実験を開始することになる.このとき、全く 偶然に選んだ出発組成の化合物が存在し、しかも その化合物が調和融解する場合には、得られた固 化棒には、何の組成変化も、また累帯構造も形成 されずに、単に融解して、固化しただけの試料が 超高温耐熱セラミックスの研究開発

図14 浮遊帯域法における部分融解発生機構,

得られる. しかしながら,一般にはこのようなケースはほとんどなくて,例えば図14のP点のように,化合物の組成とはずれた組成を出発組成として SCFZ 実験を行うことになる.

ここで、図14のP組成を出発組成とした場合の 試料の融解について考えてみよう。

細長い試料棒を装置にセットし、中心部を赤外 炉で加熱して行く.このとき、温度勾配は、大略 図14の分布を保持しているものとする.加熱が進 んで、試料の最高温度部が T_3 に達すると、部分 融解が始まる.更に温度が上昇すると部分融解が 進み、液相の量が増えてくる.最高温度部が T_2 を超え T_1 に達すると、この部分では完全に固相 は消えて液相のみとなる.しかし、これを中心と して、上側、下側に遠ざかるにつれて温度は下が っているから、図14に示す通り、試料棒の中で、 温度 T_2 から T_3 の間は部分融解が生じており、 この領域は、必ず形成されることを示している.

SCFZ 法に従って,系の温度を下げて行くと, 被加熱中心の遠い方から順次固化が始まるが,こ のとき,部分融解領域に共存する固相も,そのま ま固化した部分に順次とり込まれて行く.このと き,重力効果によって,共存する固相が片方に浮 いたり,逆に沈んだりといった,いわゆる分別作 用 (fractionation) も生じやすいが、いずれにし ても、固化過程の最初の部分には、部分融解領域 の固化に起因する二相共存状態が観察される.こ の場合の特徴は、固相の形状、分布に特定の規則 性が認められないことである.また、この領域に は、出発物質として、焼結体を使用する場合に は、これに含まれるガスが液相中に気泡として共 存し、共存する固相の動きとも重なって、複雑な 様相を呈するのが普通である. $MgO-TiO_2$ 二成 分系の場合には、特に不都合は生じなかったが、 この部分融解した部分の共存する固相の組成が固 溶体組成である場合には、正確な固溶領域の決定 が難しい.このような場合には、この部分融解領 域を形成させないで、SCFZ 実験を行うことが望 まれるが、これについては、後で述べる.

2.1.6(2) 共晶

SCFZ 実験によって得られた固化棒の最終固化 部分には,原則的に共晶部分が存在する.共晶組 成の決定は,材料の耐熱性,反応劣化等の見地か らも重要なことである.

図11に見られるように,共晶組織を形成してい る個々のラメラの幅,もしくは間隔は,実験条件 によって変化する.

Chalmers²⁴⁾は、ラメラの間隔 λ と固化速度 R

 \cdots (3)

との間には

 $\lambda \propto R^{-1/2}$

の関係が成り立つことを示しており、このことは 多くの実験事実によって確かめられている(例え ば、 $MgO-MgAl_2O_4$ 系における Kennad 等の実 験²⁵⁾).

ここで, ラメラの幅 λ には, 次に示すように, EPMA を用いての組成決定に際して 重要な役割 がある.

ラメラの間隔は, 普通には, 数 μm~数+μm 程度のものであり, 各々のラメラ構成 相の 組 成 と,全体の平均組成である共晶組成を決めるには EPMA を用いるのが最も有利である. EPMA を 用いて, 各ラメラの組成を正確に測定するために は, ラメラの幅は, 電子ビームに対して, 十分大 きい方が好都合だし,逆に, 平均組成を測定する には, ラメラの幅は十分細かい方が無難である. さもないと極めて数多くの測定を繰返して, その 平均組成を出す必要があり, マニュアルコントロ ールの EPMA を使用する場合には, 測定者の負 担が過酷となりすぎる.

図15は、EPMA を用いて、二相共存状態の個 々の構成相を決定するのには細い電子ビーム(約 3µm)を使用し、逆に平均組成を出すのには、 太い電子ビーム(約50µm)を使用した場合の結

図15 融体を急冷した 試料の EPMA
 による分析例;上はビーム径
 3 µm,下は 50 µm の場合の結
 果を示す²¹)

果を示してある²²⁾.

2.1.6(3) 離溶と相平衡

離溶(exsolution)とは、高温で形成された固 溶体が、サブソリダス領域でその固溶量を減じ、 その分量に相当する異相を固体中に析出させる現 象のことである.この反応は固相中で生ずるか ら、析出した固相の配列状態は母結晶の構造の規 制を受けて、ある特定の方向に線状、もしくは、 板状となって並んでいるのが普通であるから、こ の離落組織を他の共晶、セル成長等の組織と区別 することは、比較的容易である.

図16に、2 MgO・TiO₂ 組成の原料のうち MgO の3重量%を CuO で置換した試料を帯域溶融法 によって処理したときの生成物の断面図を示す. この図において、左側は、共晶による2相共存で あり、右側は離溶による2相共存であることは 一目瞭然であろう.更に、この試料を1400℃に12 時間保持後、急冷すると左側はそのままである が、右側はほとんど消える.このことからも離溶 組織であるか否かの識別は可能である.

しかるに問題は、このような離溶によって形成 されるラメラの幅が小さく、これの組成を直接決 定するのが難かしいことにある.

 $MgO-TiO_2$ 系の場合にも、 $MgTiO_3$ には TiO_2 側に約3%程度の固溶領域があり、これが離溶し て形成したと思われるラメラが観察されるが、こ の幅は数 μ m 以下で、現在の EPMA の分析精 度ぎりぎりであり、正確な組成が決められなかっ た.そこで、今回の $MgO-TiO_2$ 系の場合には、 $MgTiO_3$ 相と TiO_2 相の間には、化合物として $MgTi_2O_5$ 相が存在すること。 $MgTi_2O_5$ 相は常温 まで安定な化合物であること等から、 $MgTiO_3$ 相

図16 典型的な共晶組織(左側)と離溶組織(右 側)の対比.

から離溶によってはき出された相は $MgTi_2O_5$ 相 であるとしたが、堀内等²⁰⁾による STEM を用い た予備実験によれば、この場合の析出相は TiO₂ 相である可能性が強く、もしそうだ と す れ ば、

"離溶組織は必らずしも相平衡図通りには形成されない"ということを意味する.

一般的には、離溶が生ずる、即ち、ソルバスが 存在するということは、相平衡で扱われる理想溶 液からのずれが大きいことを意味し、かつ、離溶 に先立つ、固溶体を形成している成分の構造が違 っていることを意味するから、上述の離溶組織と 相平衡図が必らずしも対応しない場合はあり得る ように思われる.

2.1.6(4) セル成長による二相共存

セル構造は、溶液成長法による単結晶育成がそ うであるように、結晶が析出している温度におい て、固相とそれが平衡共存する液相の組成が異な るような系からの結晶成長において常に見出さ れ、それゆえに常にその除去に悩まされる問題で ある. セル構造の特徴は、図17に見られるよう に、育成方向に平行に走る境界相によって区切ら

図17 FZ 法で育成した Y₃(Fe, Ga)₅O₁₂ 固溶体単結 晶中に見られるセル成長模様.上は育成方向 に平行方向,下は垂直な断面で,いずれも研 磨後,熱リン酸でエッチングしてある²²⁾.

れた領域, セルが存在することで, このような組 織から構成されていても, マクロ的には単結晶と して扱われる場合が多いし, 通常はそれで何ら差 しつかえはない.

セルの境界相は、図17からも分かるように、育 成が他よりも遅くなっている.即ち、溶媒に富ん だ液相から固化しており、固溶体を形成する不純 物が液相に含まれている場合には、この不純物 は、境界相により多く凝集するのが普通であり、 場合によっては、溶媒がそのまま、このセルの境 界相に取り込まれて、二相共存状態を呈すること がある.

Tiller et al^{27,28)}は、セル構造は、成長してい る固体と液体との界面附近に形成される 溶媒 も しくは不純物に富んだ部分に発生する、組成的過 冷却領域によってもたらされるとしている.いず れにしても、成長している固体表面からはき出さ れてくる溶媒の組成的な不均一性、ゆらぎによっ て引き起こされていることは間違いなく、したが って、セル構造の形成を防止するためには、はき 出される溶媒の量を相対的に減らすか、それ と も、このはき出されてくる溶媒を自然対流、もし くは強制対流などによって、早く遠くへ運んでし まえばよいことになる.

セル成長を防止する実験的な対策としては,次のようなことがらがあげられる.

- (イ) 成長速度を小さくして、はき出される溶媒の絶対量を減らす。
- (ロ) 固相線と液相線がなるべく近くなるような 条件を選び、はき出される溶媒の相対量を減 らす。
- (ハ) 撹拌を行なって、拡散を助ける.
- (=) 拡散係数は一般には高温になるほど大きいから,結晶化温度としてはなるべく高温で育成できる条件を選ぶ.

この他,系によっては,浮力(重力効果)が強 く作用することがあるから注意を要するが,これ については,別の機会に述べる.

SCFZ 法においては,固液界面の移動速度と撹 拌に関係するシャフトの回転速度が可変できる因 子である.

シャフトの回転速度については、上下のシャフトを互いに逆に、早く回すほどに 撹拌効果 は 大きくなるが、回転数を増すほどに、回転に 伴う

遠心力も大きくなるので,試料の粘性にもよるが,100 rpm 程度が限界で,これ以上早く回せない.

固液界面の移動速度については, 遅ければ 遅 い程に, セル成長を防止できるが, むやみに遅く する必要はなく, MgO-TiO₂, Y₂O₃-Fe₂O₃, B-C 系等にあっては 1 mm/hr 程度で十分であっ た. しかるに, Al₂O₃-SiO₂ 系にあっては, 固化 に伴ってはき出される SiO₂ に富んだ液の粘性が 極めて高く, 0.2 mm/hr まで遅くしなければな らなかったが, 通常はもっと早くして差しつかえ ない.

2.1.6(5) 過冷却と種まき法

融体からの固相の析出に際して、しばしば生ず る過冷却現象は、相平衡研究にとって、やっか いな問題を引き起こすことが多く、特に SiO₂、 B_2O_3 のように、粘性が高く、ガラスを形成しや すい成分を含む系においては、特にそうであっ た.

代表的な例は、 Al_2O_3 -SiO₂ 2成分系の相平衡 研究において観察される. ムライト組成(例えば $3Al_2O_3 \cdot 2SiO_2$)に調製した試料を加熱して行く と、1810℃で全ての固相は消滅する²⁹⁹. しかる に、この融液の温度を下げて行くと、1750℃に下 がっても、まだ固相の析出はみられない. このよ うな現象は他にもしばしば観察され、相平衡に関 する実験結果の再現性を悪くしているが、これま でにも、過冷却の影響を減ずる努力はなされてき た.

例えば、FeO-Al₂O₃-SiO₂ 系において、天然に 産出する鉄コーディライト(2FeO・2Al₂O₅・5Si O₂)の初晶領域は長い間,見出されなかった.そ こで、Schairer および八木³⁰⁾は、急冷法によっ て相平衡を検討する際、融体中に鉄コーディライ トの微結晶をふらせることによって、過冷却の発 生を抑止し、初めて鉄コーディライトの初晶領域 の検出に成功した.彼らは、この方法を"種まき 法"(seeding method)と呼んでいるが、この方 法は、実際に、ふらせた種子上に、目的成分の固 相が析出する液相の組成、温度等について相当程 度の予備実験が必要であることは、容易に推察さ れる.

過冷却の発生を抑止するには,系を撹拌等によって,"活性化"する方策がとられることが普通

である.

SCHZ 法においては、上下シャフトの逆回転に よって、融体の撹拌が間断なく行なわれているか ら、通常の急冷法のような静置法よりも過冷却が 起こり難くなっているものと考えられる.

一方,融体中に存在する固相によって,過冷却 が起こり難くなることは,当然のこととして予想 される.上述の種まき法の基本的な考え方もこれ に依存していよう.

今回の SCFZ 法によっては, 融体は常に試料 棒,もしくは,この上に形成された固相と接して いるから,種まき法を自動的に行なっていると考 えることもでき,他の方法に比べて,過冷却の影 響を受け難い方法と考えられる.

以上述べてきたように, SCFZ 法は, ルツボ等 の容器を用いなくてすむこと, 測温の誤差が結果 に与える影響が小さいこと, 等の利点があり, ま た, この方法は, 液体を介しての相平衡研究法で あるから, 固相反応を利用する方法に比べて, 平 衡状態に達する時間が格段に短かくてすむ利点が ある.

一般に、材料実験を行なう上で、容器を用いる ことから派生する実験的制約は極めて大きいもの がある.通常、最も多用される容器材は白金であ るが、これとても、1800℃を超える高温領域では 使えないし、還元性雰囲気下の場合には、試料と の反応が激しくなる傾向がある.イリジウム金属 は2200℃の高温まで使用できるが、これは酸化性 雰囲気では使用できず、他のモリブデン、タング ステン等についても同様である.

更には、高温領域での融点測定もやっかいな問 題を含んでいる.通常、熱電対を用いての測温が 行なわれているが、2000℃を超える高温領域では 光高温計等を使用せざるを得ないから、正確な融 点測定が難かしく、場合によっては、相反する結 論が導き出される恐れさえある.さらには、これ まで基本的な相平衡研究法とされてきた急冷法 は、相図の正確さを向上させようとするほどに数 多くの組成の試料を必要とし、しかも各々の試料 について数多くの急冷実験を行なわなければなら ない.したがって、サブソリダス領域での反応速 度、即ち固相反応速度が遅い系では、気の遠くな るほどに長い時間と労力を必要とし、系が3成分 系以上の多成分系になれば、なるほどにこの困難 さが増加してくるので,重要性が認識されなが ら,ほとんど相関係の調べられていない系が数多 く残されてきており,また,単純な系ですら未解 決の問題も多い.

例えば、地球科学、材料科学上、最も重要な2成 分系の1つである Al_2O_3 -SiO₂ 系においても、常 圧で存在する唯一の化合物であるムライト(3 Al_2 $O_3 \cdot 2 SiO_2$ と表記)の融解性状については、今世 記の始めより、世界各国で数多くの研究者によっ て調べられ、数多くの論文が報告されていなが ら、調和融解説と分解融解説が対立し、今日に到 るも定説のない状況にある²⁹⁾.このような混乱が 解決できない理由としては、この系が比較的高温 (~1900℃)を必要とすること.この系の融体が 過冷却現象を生じやすく、液相線の検出が困難で あること.更には、固相の析出に伴って界面に形 成される SiO₂ に富んだ液相内での拡散が遅く、 平衡状態に達し難いことなどがあげられる.

Al₂O₃-SiO₂ 系のように,従来の相平衡研究法 では解明が困難な系に関しても,SCFZ 法によっ て,より正確な知見が得られるものと予測される が,特に 2000℃を超えるような高温領域では, SCFZ 法が基本的な相平衡研究法として多用され て行くものと思われる.

2.2 高温高圧下での単結晶育成法

2.2.1 緒 言

基本的な無機材質の研究にとって、よくキャラ クタライズされ、かつ種々な物性測定に耐え得る 大きさの単結晶の存在が重要であることは言うま でもない.更には、産業の進展、高度化に伴っ て、材料に対する要求もより苛酷なものとなりつ つあり、必要な不純物を必要量、均質に導入した 単結晶、即ち、均質組成の固溶体単結晶育成法の 確立が急務となっている.

一般に、単結晶を合成するのに最も簡便で多用 されている方法は、適当な融剤に原料を溶かし込 み、これをゆっくりと冷却して単結晶を得る、い わゆる融剤を用いた徐冷法であろう.しかし、こ の方法は、(イ)大型の単結晶が得難いこと、(ロ組成 が均一にならず、また、融剤が不純物として結晶 中に取り込まれやすいこと、(い単結晶の育成に時 間がかかり、しかも育成条件を決めるために長時 間、多数回におよぶ予備実験が必要であること、 などの欠点がある.

一方,最近のエレクトロニクスの驚異的な発展 を支えている基本材料のうちのいくつかの単結晶 は,引き上げ法で育成されているものが多い.引 き上げ法は,適当なルツボ中に原料を溶かし込 み,これに種子結晶を浸して太らせつつ,回転し ながら引き上げていくもので,ルツボ材として は,半導体用シリコンの場合には石英,電気光学 結晶である.ニオブ酸リチウムでは白金,磁気バ ブルメモリー用基板であるガドリニウムガリウム ガーネット(GGG)の場合にはイリジウムが使用 されている.

しかるに、本超高温耐熱セラミックスに関する 特別研究においては、2000℃を超える高融点物質 の単結晶育成が主要な目標の一つとなっており、 このような高温領域で任意に使用できるルツボ材 がないので、より低温領域で単結晶育成を行なう か、または、ルツボ等の容器を使用しなくてすむ 別の方法によって、目的組成の単結晶育成を行な う必要がある.

融液を試料それ自身に、表面張力を利用して保 持させ、この融体を移動させることによって、試 料の融解, 析出を継続させて単結晶を育成する方 法は、浮游帯域法と呼ばれ、原理的には、最も応 用性の広い単結晶育成法である.通常,浮遊帯域 法とは, 原料棒を融解させ, そのまま固化させる 場合を意味するが、融体部の組成を始めから別の 組成にしておき(即ち、溶媒として使用する)こ れを移動させて単結晶を育成する方法は浮遊帯域 溶媒移動法 (Traveling Solvent Float Zone Method) を呼ばれ、試料の融解性状に左右されず、 また、均質組成の固溶体単結晶育成法として利用 できる、これまで、当無機材質研究所において は、この方法を用いて、多くの分解融解化合物 (YFe₂O₄¹⁸⁾, Y₃Fe₅O₁₂¹⁹⁾, Mg₂TiO₄²¹⁾等) や均質 組成の固溶体 $(Y_3Fe_{5-x}(Ga, Al)_xO_{12}^{22})$, MgTi_{1+x} O3+2#17) 等の大型単結晶育成を行い, 原料棒の 調製,育成法,キャラクタリゼーション法等につ いて検討を進めてきた.

2.2.2 浮遊帯域溶媒移動法

任意の組成の混合物を融解したとき、そのまま の組成で全部溶け、そのまま冷却すると元の組成 の固相に戻る(これを一致融解または調和融解と 呼ぶ)ことはほとんどなく、普通には元とは別の

-17 -

図18 完全固溶する A-B 2成分系の模式的相
 図. 組成 C₂の固相は組成 C₃の液相と温
 度 T₂ において平衡共存することを示す.

組成の固相を析出する.

例えば、図18に、一般的な固溶体の模式的平衡 図を示す. 図18において、 C_2 という組成の原料 は R 点(温度 T_2)で溶け始め、P 点(温度 T_1) で全部溶けるが、この液を冷やして固めると出発 組成 C_2 とは別の C_1 なる組成の結晶が晶出し、 結果として液の組成は右側にずれるから、これに 伴って、さらに冷却の進行に伴って晶出してくる 結晶の組成も次第に右側にずれていくことを示し ている.冷却→固化が進んで、溶液の組成がQ点 (組成 C_3)までずれたとき、はじめて目的とす る組成 C_2 の結晶が晶出してくる結晶の組成は さらに右側にずれて行き、同じ組成の結晶はほと んど得られないことが分かる.

図18において, 組成 C₂の均質な単結晶を 育成 するには,結晶化が常に組成 C₃の溶液から生ず るようにすればよいことになる.これを実験的に 正しく行なえるようにしたものが,浮遊帯域溶媒 移動法である.

図19に浮遊帯域溶媒移動法の模式図を示す.目 的とする組成 C_2 の原料を上に、同じ組成 C_2 の種 子棒を下にセットし、両者の間に組成 C_3 の溶融 帯を形成せしめ、これを表面張力で保持する.次 に溶融帯をゆっくりと上側に移動させる.こうす ると、溶融帯の上側では原料棒の溶け 込み が 生 じ、下側では組成 C_2 の結晶の晶出が生ずる.こ のとき、原料棒、種子棒は、それぞれ互いに逆方 向に適当な速度で回転を与え、溶融帯に撹拌効果

図19 浮遊帯域溶媒移動法の原理図.
 組成 C₂ および C₃ はいずれ
 も 図18の組成 C₂ および C₃
 に対応する.

を与える. このようにして, 溶融帯をゆっくりと 移動させれば, 結果として, 均質組成 C₂の固溶 体単結晶が得られることになる.

実際の操作は、次のようにして行なう.まず出 発物質を目的組成になるように調合し、湿式混合 した後、乾燥したらラバープレス法で成型し、焼 結して原料棒とする.溶融帯となるべき組成の原 料棒も別に調製し、溶融帯組成棒とする.装置の 下側に種子棒をセットし、この上に溶融帯組成棒 を必要量溶着せしめ、次いで、原料棒を上側シャ フトにセットして、浮遊帯域溶媒移動法を完成さ せる.溶融帯組成棒は必要量を採取し、原料棒の 下側に接合プレスしておいてもよい.

この方法による単結晶育成が定常的かつ安定に 行なわれるためには、図19のシステムが安定に継 続されることが必要であり、この際、溶融帯の組 成と量は不変でなければならない. さもないと、 育成結晶の組成が一定とならない. 組成に関して

図20 定常状態から急冷された溶融帯近傍 の拡大図(左),右側は模式的に表 したものである.

は、液相を含む相平衡図が知れていれば、ある程 度,推定できるが、量に関しては、原料棒径、回 転数等によって、固液界面の形状が変化するし、 特に本研究のように、光集中式の装置を使う場合 には、赤外線の吸収係数が個々の物質によって大 きく異なるから、実際問題としては、予備実験に よって決定せざるを得ない.

浮遊帯域溶媒移動法に用いる溶媒(溶融帯)の 組成と量は、次のようにして決定する.

目的とする組成に調製した原料棒 2本 を 用 意 し、1本は集光炉の上シャフトに、残りの1本は 下シャフトに取り付けて 先端部を融解、接着 さ せ、上、下のシャフトを互いに逆に回転させなが ら、浮遊帯域法のシステムを完成させる.このま ま、一定の速度で溶融帯を移動させ、移動距離が ほぼ50mm程度になったところで、すべての電力 供給を止め、溶融帯を急冷する.溶融帯の移動速 度は、系によって異なるが、通常の酸化物系では 2 mm/hr 程度、粘性の高い SiO₂ を多く含むよ うな系では 0.5 mm/hr 程度とする.得られた試 料棒は長さ方向に二つ割し、切断面を研磨する.

図20に,このようにして得られた試料の溶融帯 付近の写真を示す.図20の上側は原料棒,下側は 析出結晶,中心部は急冷された溶融帯である. EPMA を用いて,原料棒の組成と析出結晶の組 成が同一であること.すなわち,系が定常状態に 到達していたことを確かめ,溶融帯の組成を決定 する.溶融帯の量は,試料が円筒状であると仮定 して,図20から計算によって求める.

2.2.3 原料棒の作製

浮遊帯域法を用いた相平衡研究にとっても、単 結晶育成研究にとっても系の安定性が重要であ り、これは原料棒側の固液界面の安定性に大きく 支配される.

固液界面の安定性に影響を及ぼす因子として は、後に述べるように(第6章)温度差帯域溶融 機構、比重差帯域溶融機構、等があるが、この 他に、一般的な注意として、均質で、真直で、高 密度の原料棒が好結果を与えるであろうことは言 をまたないから、原料棒の作製は重要な意義をも つ.

高密度の原料棒作製には,一般的な高密度焼結 体作製のための手段がいずれも有用であるが,通 常は次のようにして行なう.

出発物質として、粒度の細かい、焼結性のよい 粉末を選び、秤量後、アルコール等を用いて湿式 混合する.乾燥後、細長いゴム袋につめ、500~ 2,000 kg/cm² の圧力下でハイドロスタテイック プレスを行なう.この方法は径、8~10 mm、長 さ50~150 mm 程度の成型棒の作製には簡便で試 料の無駄も少ない利点があるが、真直で、表面の 円滑な成型棒を作製するには若干の 訓練を要す る.

次いで, 焼結炉にて, 焼成を行なうが, 焼成温 度は出来る限り高い温度で行なうことが好結果を 与える場合が多いようである. 超高温耐熱セラミ ックスに関する特別研究で扱う材料には, 高揮発 性の材料も多いので, この焼成を高圧下で行なう 必要が生ずる場合がある. このような場合には, 内熱式ガス圧炉を使用する.

参考文献

- 1) I. Shindo, J. Crystal Growth, 50 (1980) 839.
- 2) N. L. Bowen, Amer. J. Sci., 33 (1912) 551.
- E. M. Levin, C. R. Robbins and H. F. Mc-Murdie, "Phase Diagrams for Ceramists", P. 30 (ed. and published by The American Ceramic Society, Inc., 1964).
- F. Ordway and T. F. Newkirk, Ceram. Age, 58 (1951) 28.

- H. A. Friedman, J. Sci. Instrum., 44 (1967) 454.
- 6) N. L. Bowen, J. Geol., 30 (1922) 177.
- 7) W. A. Tiller, Trans. AIME, 215 (1959) 555.
- W. G. Pfann, "Zone Melting" 2nd ed. (Robert E. Krieger Co., New York, 1978).
- J. P. McHugh and W. A. Tiller, Trans. AIME, 215 (1959) 651.
- M. J. Joncich and D. R. Bailey, Anal. Chem., 32 (1960) 1578.
- A. S. Yue and J. B. Clark, Trans. AIME, 221 (1961) 383.
- 12) V. M. Agoshkov, Dokl. Akad. Nauk SSSR, 52(1) (1963) 96.
- 13) I. Kushiro, Amer. Mineral., 57 (1972) 1260.
- L. W. Coughanour and V. A. DeProsse, J. Research Natl. Bur. Standards, 51 (1953) 85.
- F. Massazza and E. Sirchia, Chime. Ind. (Milan), 40 (1958)376.
- 16) E. Woermann, B. Brezny and A. Muan, Amer. J. Sci. Schairer Vol. 267 A (1969) 463.
- 17) I. Shindo, J. Gem. Soc. Japan, 7 (1980) 3.
- 18) I. Shindo, N. Kimizuka and S. Kimura, Mat. Res. Bull., 11 (1976) 637.
- 19) S. Kimura and I. Shindo, J. Crystal Growth, 41 (1977) 192.
- S. Kimura, I. Shindo, K. Kitamura, Y. Mori and H. Takamizawa, J. Crystal Growth, 44 (1978) 621.
- I. Shindo, S. Kimura and K. Kitamura, Mat. Sci., 14 (1979) 1901.
- I. Shindo, N. Ii, K. Kitamura and S. Kimura, J. Crystal Growth 46 (1979) 397.
- 23) K. Kitamura, N. Ii, I. Shindo and S. Kimura, J. Crystal Growth, 46 (1979) 277.
- B. Chalmers, "Principles of Solidification" p. 194 (John Wiley, New York, 1964).
- 25) F. L. Kennad, R. C. Bradt and V. S. Stubican, J. Amer. Ceram. Soc., 56 (1973) 566.
- 26) H. Horiuchi and T. Tanaka, private communication.
- 27) W. A. Tiller, K. A. Jackson and J. W. Rutter, Acta Met., 1 (1953) 428.
- J. W. Rutter and B. Chalmers, Can. J. Phys., 31 (1953) 15.
- 29) R. F. Davis and J. A. Pask, "High Temperature Oxide", Vol.5-N, p. 37 (Acad. Press, New York,

1971).

30) J. F. Schairer and K. Yagi, Am. J. Sci., Bowen Vol. Part I (1964) 471.

2.3 浮遊帯域溶融装置

2.3.1 緒 言

前章では,浮遊帯域溶融法を用いた超高温耐熱 セラミックスに関する相平衡,および単結晶育成 法について述べた.本特別研究が主たる研究目標 としている物質群は,その融点が1800℃を超える ような超高融点物質系であり,このような系では, その融点と沸点が接近する傾向があるために,融 解に際して,蒸発.分解が避け難いことがある. したがって,これらの物質を融解するために,幾 多の利点を有する浮遊帯域法を適用するには,試 料の分解,蒸発,等を抑制する必要がある.

試料からの蒸発を抑えながら融解実験を行なう 浮遊帯域溶融装置としては、これまでにうず電流 集中装置¹⁾, 高圧型高周波誘導加熱装置²⁾, レー ザー光集中加熱装置³⁾, および,蒸発成分をプラ ズマ化して打ち込み,結果として組成をコントロ ールしようとする型の装置⁴⁾, 等が開発されてお り,特に,高圧型高周波誘導加熱装置は多くの炭 化物,ほう化物等の研究に使用されている.しか しながら,この方式は,被加熱試料が導体,もし くは半導体である場合にのみ適用が限られるか ら,無機材料の多くがそうであるような電気的絶 縁体の融解には別の方式が必要である.

明石等⁵は,回転楕円面鏡を反射鏡として使用 する赤外線集中炉を開発し、磁性材料の単結晶育 成に有効であることを報告した. この装置は光源 としてハロゲンランプを使用しており、溶融状態 を監視できるような光学系が取り付け ら れ て い て、従来からの光集中式の溶融炉を大幅に改善し たものであった.本装置は昭和49年,当研究所に も導入され、これまで、浮遊帯域溶媒移動法によ る分解融解化合物、および均質組成の固溶体単結 晶育成,更には浮遊帯域徐冷法による相平衡研究 法の確立等、多くの成果を収めてきているが、こ れらについては既に述べた. そこで、本特別研究 においては、上述の光集中型浮遊帯域溶融装置の 利点を残したまま、これを高圧下で使用し、一般 的な無機材料の融解実験に使用できるような, 新しい,赤外線集中型浮遊帯域溶融装置を開発

図21 赤外線集中式浮遊帯域溶融装置の概念図

し, 試料のキャラクタリゼーションシステムをも 完成させ, 効率的な研究システムの確立を目標と した.

現在までに開発が終了し、実用に供されている 赤外線集中型浮遊帯域溶融装置には、熱源として ハロゲンランプを使用する型のものと、クセノン ランプを使用するものとがあり、ハロゲンランプ を使用する型のものは、楕円面反射鏡が1つのも のと2つのものがある.

図1に、ハロゲンランプを使用した単楕円型赤 外線集中加熱装置の略図を示す. (図21)

一方,これらの装置は,試料室に用いられてい る石英管を肉厚にすることによって,約20気圧程 度までの高圧下で融解実験を行なうことができ る.しかしながら,この程度の加圧では,高圧に よる揮発の抑制効果が余り期待できず,本格的な 高揮発性物質の融解実験装置としては,何として も100~200気圧程度の高圧が必要である.

光集中式浮遊帯域溶融装置の高耐圧化について は、種々な技術的制約がある.装置としては、試 料室のみを耐圧構造にすれば事足りるが、光集中 式であるためには、耐圧容器として、使用できる 材料は、石英、サファイヤ、等に限定されてしま い、これらを用いて、耐圧容器を設計しようとす ると、試料室の内径を充分小さくする必要があ り、2000℃を超える高温を発生させ、かつ、5 mm 角程度の溶融試料を得ることは困難であっ た.

次に,試料室と,光学系のみを高耐 圧 構 造 と し,駆動系を外に出す方式について検討した.こ の方式は,他の高周波誘導加熱装置等にも採用さ れている方式で,最も実現性の高い方式と思われた.この方式における技術的課題は,次の3つが 大きなものとして挙げられよう.

(i) 耐圧型光学ランプの開発

(ii) 光学系における対流制御

(iii) 駆動部との圧シール

上記3つの要因は, 圧力が100気圧程度までの 場合には, 比較的, 解決は容易と思われたが, こ れ以上の高圧になると, 特に3番目の駆動部との Eシール方式に関して, 見通しが得られなかっ た.

そこで, 試料駆動部も耐圧容器中に封じ込める ことにした. この方式に関しては, 耐圧容器中に 設けられた, 駆動芯を外部からマグネットを用い て駆動し, 回転, 移動させる方式の装置が実用化 されている. この方式は, 耐圧容器の設計上の観 点からみれば, 容積を小さくできること, 耐圧容 器内に電気回路を必要としないこと, 等の利点が ある.

他方,高耐圧容器中でモーターを動かし,直接 的に駆動させる方式は,正に,常圧用の装置を全 てそのまま,高耐圧容器中に封じ込めた型となる が,この方式の装置が実用化されている例はな い.そこで,本特別研究では新らしい可能性を見 出すことを一つの使命と考え,更には,より高圧 力化の望める装置として次の様式を基本的な設計 方針とした.

イ.光集中式浮遊帯域溶融装置とする.

ロ. 耐圧ランプを開発する.

- ハ. ランブ,集光系,駆動系は全て耐圧容器中 に封じ込める。
- ニ. 設計の目標値は、最高使用温度、2000℃、 最高使用圧力、200 kg/cm²とする.

上記の目標達成のために,集光方式,冷却,等 の技術的要素について検討したが,詳細は第3章 に述べる.

参考文献

- 1) R. R. W. Johnson, J. Appl., Phys., 34, 352(1963).
- J. S. Haggerty, D. W. Lee and J. F. Wenkus, Tech. Report. AFML-TR 228, Sept. (1968).
- K. Takagi and M. Ishii, J. crystal Growth, 40, 1 (1977).
- Y. Kumashiro, E. Sakuma, Y. Kimura, H. Ihara and S. Misawa, J. Crystal Growth, 52, 597

-21 -

(1981).

5) T. Akashi, K. Matsumi, T. Okoda and T. Mizutani, IEEE Trans. MAG-5, 285 (1969).

2.4 超高温構造解析技術の確立

2.4.1 緒 言

物質の賦有する種々の性質は,一般に,その物 質を構成する原子種と,それ等の間の結合状態に よって決定される.特に原子の3次元的周期構造 を基本として成り立っている結晶質物質にあって は,結晶構造を正確に把握することが,その諸性 質の根源を理解する上での出発点である.物質の 構造と性質の相関関係に関する知識体系を構築 し,これを駆使して目的に最適の物質を発掘・創 製することこそ材料科学の究極の夢であると言っ ても過言ではない.今日迄,構造と性質の関連に ついて,ごく概念的な取扱いがある程度試みられ ているものの,定量的な議論を進める迄には至っ ていないのが現状である¹.

さまざまな材料分野にあって超高温耐熱セラミ ックスも例外ではなく,特に,超高温下における 化学的・物理的な耐久性と,化学組成,結晶構造 との相関関係の解明こそ,新しい,超高温耐熱セ ラミックス開発のための指導原理の基盤をなすも のである.高温下での構造解析が進められてきた 物質系は酸化物系がほとんどであり,現在,超高 温耐熱セラミックスとして注目されてきている非 酸化物系化合物に関するこの種の実験は,いまだ 皆無であると言える.また化合物一般について も,データの得られている温度域も,1200℃が上 限であって1500℃以上の,いわゆる超高温度域で の実験データは,わずかに,1,2件を数えるの みである.

次に、本章で報告する研究の発足以前の、高温 構造解析技術の沿革の概容を紹介すると、1964 年、R. A. Young²⁾が、ワイセンベルグ型X線単 結晶回折計に熱風型加熱炉³⁾を装着して、石英 (SiO₂)の573℃付近におけるα → β 転移の機構 を研究したのにはじまり、その後約10年間、主 として鉱物学、窯業工学の分野で、けい酸塩を中 心とした物質系について、高温下の構造解析が進 められた結果、これ等の物質系に関して、温度の 上昇に伴う熱膨張や相転移の機構、また相平衡の 基盤をなす相の安定関係に関する理解が、原子論 的尺度にまで掘り下げられてきた⁴⁾. この間の実 験では、白金ロジウム系合金細線を発熱体とした 小型電気炉中に結晶を挿入し、発熱体からの輻射 熱および炉内空気の温度上昇を利用して結晶を加 熱する方法が標準的であったため、実用最高温度 も1200℃程度が限度であった(写真1).その後,酸 素一ブロペン炎を用いる小型ガス・トーチ⁹⁾¹⁰⁾¹¹⁾ やレーザー光集光法¹²⁾が開発され、2000℃を超え る温度域での実験が可能となってきた.

 写真1 筆者が、米ワシントン州立大滞在中 (1973-1975)設計、使用した白金ー
 ロジウム合金系細線を発熱体とする四
 軸型単結晶回析計用加熱炉。a)遠観.
 b)炉の拡大写真。文献 5)-8)

このような歴史的背景にあって、本研究におい ては、実用最高温度を2500℃とし、室温より最高 温度までの温度域において、試料単結晶を希望の 温度に安定裡に保持し、また、non-quenchable phase (急冷法により室温まで保存することが不 可能な相)でかつ不可逆転移を起こす場合は、回 折計上において直接単結晶を育成し、転移点以下 に温度を下げることなく引続き構造解析が行なえ るような実験システムの検討を行なった.また、 この実験システムを用いて得られる超高温下のX 線回折データの処理に基づく構造解析手法につき 検討した.

本節においては、以上、超高温構造解析技術の

確立に至る経過を,実験システム,および実験デー タ処理・解析手法の検討結果という形で報告する.

2.4.2 超高温X線単結晶回折実験システム

2.4.2.1 単結晶回折計

現在、最も一般に用いられている単結晶回折計 は、いわゆる四軸型回折計であり、これは、結晶 の任意の回折面の法線を、検出器中心軸および入 射X線を含む面上に持ち来たすためのジャイロ軸 χ, φ, 次に, これ等2つのジャイロ軸の回転によ り、検出器および入射X線を含む面内に持ち来た された回折面の法線を、入射X線と計数管中心軸 とのなす角の2等分線上に位置せしめるためのω 軸,および計数管の回転軸である 20 軸,の四つ の回転軸より構成される(図1). これ等四軸の 回転は、いずれも1/100°を移動単位(各軸の角度 位置の再現性は 2/1000° 程度) として行なわれ, かつ,回折線の測定に際しては,ω軸の回転と2 θ 軸の回転の角速度比を1:2に保ったまま同時 回転 (ω-2θ 走査) できるため, 入射X線の入 射角・波長に多少の広がりがあっても, 積分回折 強度の高精度な測定が逆格子空間の広汎な範囲に 亘って行なえる利点があり,本研究においても, 超高温度域における各物質の結晶構造を可能な限 り精密に決定する必要から、この型の単結晶回折 計を採用するのが最良の手段であると 結 論 され た. しかしながら, 試料である単結晶を光集中法 により加熱し、しかも2000℃を超える超高温下に 保持したり、浮遊帯域法により単結晶を育成する 機能を備えるためには,後節で検討する単結晶育

図1 四軸型単結晶回折計の構成概念図

成・加熱系に要するスペースから言っても,また,高温の試料部と、ジャイロ軸ズ、 φ の精密な 機械部との温度差を充分確保する意味からも、 χ サークル(φ 軸を搭載したまま、 χ 軸回転を行なう 輪状シャフト(図1))の内径を少なくとも300 m/m以上(通常の四軸型回折計では230 m/m以 下)とし、かつ φ 軸を、 χ サークルの内軸中央部 から数 cm~ 十数 cm はずした、いわゆる offcenter type とすることが必要となる(図2). 加うるに、各軸のシャフト、ギヤ、モーターも、 単結晶育成・加熱系の重量に充分見合った強度を 持たせる必要があるが、具体的な条件は、次の単 結晶加熱・育成系の部で取扱う.

図2 四軸型回折計の (a) on-center type と (b) off-center type の相違

無機材質研究所研究報告書 第29号

	原理	最高温度	長所・短所
①傍 熱 法	ニクロム, Pt-Rh 系合金等の 抵抗線による輻射対流	1200°C	温度制御が比較的容易. 且し20の制約 加わる,
②吹きつけ法	上記発熱体により加熱した気 体を吹きつける	1200℃	試料を一様に加熱しうる. 2θ 角の限界 実際上なし.全ての物質を加熱しうる.
③ガス・トーチ法	酸素プロパン炎による直接加 熱	2500 ℃	試料を一様に加熱しうるが温度制御にや や難あり. 20 角限界実際上なし. 全て の物質を加熱しうる.
④レーザー集光法	レーザー光のレンズによる集 光	2500 °C	物質による光の吸収特性依存度大.
⑤アーク・イメー ジ炉	ハロゲン・ランプ, Xe ラン ブの凹面鏡による再集光	2500℃	FZ 法の適用による回折計上での単なる 育成即解折が可.20 角限界あり.物質 による光の吸収依存度大.

表1 X線単結晶回折計用加熱装置の比較

図3 四軸型回折計用超高温試料加熱方式の概念図

2.4.2.2 単結晶加熱系

表1に、今日まで活用されてきた種々のX線単 結晶回折計用加熱装置の原理、最高温度、長所・ 短所を掲げた.結晶の最高到達温度のみに注目す れば、ガス・トーチ法やレーザー集光法も、確か に、本研究において目標とする最高温度2500℃を 実現し得るが、今一つの目標である.non-quenchable 相単結晶の回折計上での育成 → 直接構造 決定には、以下において検討するアーク・イメー ジ炉による FZ 法の導入が必須 である.最高温 度2500℃を目標とし、これを実現させる最小の市 販 Xe ランプ (ウシオ電機製 UXL-1000 HK-0
 型)を用いた場合を仮定し、これに適合するミラ
 ーの寸法として焦点距離 70 m/m, 外径 200 m/
 m, 支持部を含む直径 250 m/m を仮定して、ミ
 ラーの間隔,使用X線の波長を検討した。

ー般にミラーの外縁外径を D m/m, 2 枚の主 ミラー(後述の第一, 第二のミラーに相当)の間 隙を d m/m とすると、 χ (通常, φ 軸が鉛直線に 対してなす角に等しい)= α °のとき, 結晶中心を 含む面内で, 結晶中心から両ミラーの外縁を見込 む角 β (°)は,

図5 X線源として AgKα 線を用いた場合,第4図の各曲線が MoKα 線 を用いた場合のどのような制約に相当するかを示す図

 $\cdots(1)$

より,

 $\beta = \cos^{-1} \{ D^2 - 2 d^2 \cot^2 \alpha - d^2 \} / (D^2 + d^2) \}$

で与えられる (図4). したがって, Dの仮定し た値として 250 m/m を与え, 種々のdの値につ いて, $\beta \epsilon \alpha$ の関数として求めれば, 図4に実線 で示したような曲線群が得られる. 同図の各曲線 の右端すなわち χ 軸角=90°に相当する時の β 角 が, ミラーの障害が最大となる時の 2θ の限界で あり, その値は(1)式に χ =90°を代入することに

$$\cos^{-1}{(D^2-d^2)/(D^2+d^2)}$$
 ...(2)

と求められる.次に,通常のX線回折実験には, X線源として,CuまたはMoのK α 線(波長 は前者が1.5418Å,後者が0.7107Å)が用いら れる.ところで,一般に四軸型回折計による単結 晶データの採集範囲は,使用X線波長が一定値 λ の場合,2 θ (θ :回折結晶学におけるブラッグ 角)の最大値2 θ_{Max} .で表わすことができるが, このことは、逆格子空間において、原点から半径 2 sin θ/λ (Å⁻¹) の球体内に ある 逆格子点の回折 強度が採集されることを意味する. したがって、 波長 λ_1 のX線により 2 θ の最大値 ϕ_1 までの反 射強度を測定したとして、同一の範囲を、別の波 長 λ_2 のX線で採集する に は、 2 θ の最大値 ϕ_2 を、

次に、同じミラー、Xe ランプを用いたとして、これ等の配置関係から、dの値についてどのような制約が加わるかを考察する.一般に焦点距離f なる回転放物体の断面の放物線は、

$$y = \frac{x^2}{4f} \qquad \cdots (4)$$

と表わされる、本研究で例として取り上げたミラ -- は, 焦点距離 70 m/m であるから, その凹面 が完全な回転放物線で表わされるとして、その中 心断面は、y=x²/280 の放物線で与えられる. し たがって外径(切り口の内径)が 200 m/m のと きは、 上式で x=100 m/m の 場合に相当するか ら、*y*≈35.71 m/m すなわち、図6における、ミ ラーの頂点から切り口までの距離Sは 35.71 m/ m となる. したがって焦点は、 ミラーの切り口 から更に、70-35.71=34.29 m/m 下に位置して いるわけであり、 Xe ランプのアークの中心は、 もちろんこの点と一致する. ところで通常の浮遊 帯域法単結晶育成装置と異なり, 同図で, ランプ より下方へ輻射される光線は、一般にこのままで は、第2のミラーにより再焦光されないから、球 心を、アークの中心と一致せしめて、ランプ直下 に設置した第3のミラーによって一旦第1のミラ ーにはね返してから垂直な平行光線として、第2 のミラーへ向うようにする必要がある.いまこの 第3ミラーの曲率半径を, 第1, 第2のミラーの 焦点距離と同じ 70 m/m とし、中央部の厚みを

図6 単結晶育成・加熱系の構成図 斜線部が上下動する

10 m/m とし, 更に外部よりこれを支持するため の 台座の厚みを 10 m/m 程度確保する 必要があ る. これ等に加えて、その直下に5m/m の余裕 を見るとして、試料の雰囲気調整管(垂直方向の 厚み5m/m, 原料棒支持具の長さ10m/m)に, 浮遊帯域法により単結晶育成を行 なう場合の, 原料棒の垂直方向へのストローク幅を30m/mと 見ると、最約的には第1のミラー下端より約180 m/m下方で再焦光させる必要がある. ところで, 図6に示した通り、MoKa 線による2 θ =120° に相当する逆格子空間をカバーするためには, 結晶の位置(再焦光点とほぼ一致する)と第1, 第2ミラーとの間をそれぞれ 125 m/m 程度離す 必要がある. 第1のミラーとの間は既に約180 m/m離れているから問題がないとして,第2のミ ラーの場合は、第1のミラーに比してはるかに大 きな焦点距離を与える必要がある. 第1のミラー で反射された平行光線を充分に生かすためには、 第2のミラーの切り口の内径を, 第1のミラーの それと同じ200m/mとしなければならない. この 時, 第2のミラーに要求される焦点距離を f₂m/m とすると、断面の放物線の式 $y = -\frac{1}{4f} x^2$ から,

 $f_2 {-} \frac{100^2}{4f_2} {=} 125$

とおくことにより, f₂≈143 m/m と定まる.

2.4.2.3 単結晶育成系

前節で算出された第2のミラーの寸法および焦 点距離に基づいて、単結晶育成を行なうための機 械部について、引続き検討を行なった。第2のミ ラーの焦点距離が 143 m/m であるとした場合, ミラーの切り口から中心までの距離は18cm.い まミラー自身の厚みを 10 m/m とると, 再焦光 位置から第2のミラーまでの距離は 153 m/m と なり、これより下の部分に機械部が収納される が、機械部は、種子結晶回転部系及び種子結晶回 転部駆動系より成り、各々の部分に駆動用のイン ダクション・モーター1基を必要とする.近年は, 小型で 高性能の インダクション・モーター が幾 種類か市販されており、 ギヤ、 シャフト類 を 含 み,厚さ40 m/m,底面積 100×100 m/m 程度の 空間に収納することは、不可能ではない、ただし、 単結晶育成時には, 種子結晶回転部系を種子結 晶回転部で 30 m/m のストローク幅で上下させ るわけであるから, 先の厚さ40 m/m にストロー ク幅 30m/m を加えた 70 m/m が, 第2のミラー 直下に、機械部のために確保されるべき厚みとな る (図6).

2.4.2.4 測温技術

室温より、1500℃程度までの高温実験において は、温度域に応じて、銅―コンスタンタン、アル メルークロメル, 白金一白金ロジウム合金等熱電 対の起電力を通じて温度を測定する手段が、一般 に用いられている. しかしながら1500℃を超える 超高温度域においては、幾つかの標準物質の融点 に基づいて、熱源(炉等)の出力と温度との関係 を導いたり、試料の輝度と、白金抵抗線の輝度を 同一視野内で比較する,いわゆるパイロメータ法 による手段が多く採用されている. 試料到達温度 が2000℃を越える加熱法のうち、小型トーチ法に よる加熱の場合は, 試料からの熱輻射の波長分布 も、白金線のそれとよく対応するため、比較的精 度よく測温できるが,光集中法による加熱におい ては、光源であるレーザーや、アークの発光特性 に加えて、試料によるこれ等の輻射光の吸収特性 によって試料から輻射の様相が大幅に異なってく るため、従来の測温技術をそのまま適用できない.

今回の検討の結果、実用的と思われる2、3の 方法が考案された.いずれも,個々の物質につい て独立に検量曲線を求めることが必要であるが、 注意深い検量実験により、かなりの精度で測温が できると考えられる。第一の方法であるが、ま ず実験温度域に融点(既知)があり、かつ、そ れ自身は赤外線を殆んど吸収しない標準物質群を 選定する. これ等標準物質の小片を交互に, 試料 ト端に載せた状態で, 試料上端部の見掛けの温度 をパイロメータで測定しつつ試料温度を徐々に上 げていき,標準物質が液状となった時点の出力と パイロメータで読んだ見掛けの温度を記録して行 くことにより、検量曲線を求める、パイロメータ に適当なフィルターを併用することにより,比較 的簡便に試料温度を測定できることが 期待 され る、第2の方法では、高融点かつ熱伝導率の高い 物質を標準物質として選定し,この物質の小片を 試料上端に載せて置き,標準物質には直接ランプ 光が当らないようにした状態で、試料上端部を加 熱し、標準物質と試料上端部をパイロメータで交 互に比較する方法である.いずれの方法において も、試料と標準物質の間の温度差が無視できると いう仮定に立脚しているが、試料と標準物質との 接触面積をできるだけ大きくする、標準物質上端 部よりの熱の逃げを最小にする等の工夫が必要で あろう.

2.4.2.5 試料の支持

室温より1200℃程度までの温度域におけるX線 実験においては、多くの場合、アルミナ・セメン ト, ムライト・ガラス等を適当な溶剤と混合した ものを、試料と支持棒(シリカ・ガラス、熱電対 の接合端等)との接着剤として用いる方法が一般 に採用されていた. しかしながら, 1500℃を超え る.いわゆる超高温度域においては,互いに成分 の異なる2物質の間には、まず何等かの反応が進 行すると考えて差しつかえなく、やむを得ず試料 を異物質に接着する場合も、高温実験の前後 に、試料と支持棒の双方を EPMA 法等により局 所分析してみることが必要である. 同様の注意 は、前節で扱った標準物質と試料の間についても 払われねばならない. 試料の支持法に関して,本 研究における検討より導かれた結論は、試料自身 の長さを充分長く取ることにより、試料と支持棒 との接点が高温下に置かれるのを極力避けること

である. この方法の障害は,入射・回折X線と試料との方位関係によって,回折に寄与する試料の体積,および試料自身の吸収効果も大幅に変化する点である. しかしながらこれ等の問題は,試料をなるべく完全な円筒状に加工すること等により,ほぼ完全に解決する. 特に,吸収効果について言及すれば.本研究において標準的に考えているAgKα線を使用波長とすることは,多くの元素に関して吸収効果を著しく小さくすることになり,利点の一つと考えることができる.

試料の支持に関連して最後に問題となるのは, 超高温下における試料の分解・昇華問題である. 特に、超高温高圧浮遊帯法により育成された結晶 の場合、この試料を常圧付近で超高温下に置く と, 試料の分解・昇華が著しい可能性が大きい. このような場合には、試料を耐圧性でX線に対し て比較的透明な小型容器にあらかじめ封入する必 要がある.この目的にかなった材料として,現在 まで知られている例にルビーの良質単結晶があげ られ、その中心部を、レーザー光で穿孔し、再封 入した場合, 数百気圧の内圧に耐えうることが知 られている¹³⁾. この場合, 容器自身が単結晶であ るから、X線回折実験に際しては、容器自身によ る回折の効果を取除く必要があるが、それは技術 的にそれ程困難ではない. ルビーに限らず, 耐圧 性が優れ,かつ逆格子点が疏な結晶ほど,目的に 叶っていると結論されよう.

2.4.2.6 結 論

以上,超高温構造解析技術のうち,実験システムに関する検討結果の概略を述べた.2000℃を超

える超高温下の実験は今日までわずかに一例とい うのが、世界的に見たこの分野の実状であるが、 今回の検討により、2500℃を最高実用温度とする 単結晶育成・加熱装置と直結したX線回折実験手 法の確立により、超高温耐熱セラミックスの開発 研究が飛躍的発展を遂げる端緒が開かれたと言っ て過言ではない。

2.4.3 超高温 X 線単結晶回折データの 処理技 術

2.4.3.1 X線単結晶

温度, 圧力を問わず, X線単結晶構造解析によ って得られる情報は, 一般に定方位を有する1 m/m 足らずの寸法の単結晶によって引き起こさ れる一連の回折スペクトルから, その中に含まれ る10¹⁵~10¹⁸ 個の単位格子胞の原子配列の平均値 を高精度で記述する諸量である. すなわち, 原子 配列を支配する大原則であり対称要素の完全情報 である空間群, および原子配列の3次元的繰り返 しの基本単位である単位格子胞の形態を表記する 格子定数, および構成原子の単位格子胞における 座標値, そして各種原子の熱振動もしくは静的変 位の平均振幅を記述するための温度因子である. これ等諸量のうち, 空間群, 格子定数, および原 子の座標値から, 各原子間の結合距離, 結合角が 高精度で求まる.

2.4.3.2 従来の高温構造解析のもたらした情報()

以前にも述べた通り,室温より1200℃の温度域 において,主としてけい酸塩を対象として行なわ れてきた一連の構造解析の結果は,単に取扱われ た物質系のみならず,無機化合物の結晶化学全体

3.7 酸化物. 酸素酸塩結晶中の堅固な結合単位である (a) TO4 四面体 (b) MO6 八面体

-28 -

超高温耐熱セラミックスの研究開発

図8 1500℃以上に分解点・融点を有する無機化合物

に対するわれわれの新しい認識を持たらした. そ の中でも特に普遍的に価値のある情報として、 SiO₄ 四面体, TiO₆ 八面体等(図7), 比較的共 有性の高い,堅固な結合によって成立している配 位多面体においては. その内部における原子間の 結合距離,結合角は,温度の変化に対して基本的 には不変であり,熱膨張,相転移といった構造変 化の主役を担うのは,アルカリ金属,アルカリ土 類金属等比較的イオン価の低い陽イオンと,その まわりに配位する酸素イオンとの間の結合距離の 再調整であり,上述したような強固な配位多面体 は,自身はほとんど変形しないままで,結晶構造 内で平行移動や回転を行なうことによって,上述 の再調整を助けているという事実である.

これ等の情報から,高温下における酸化物,酸 素酸塩の結晶相の安定性について、一つの統一的 見解が得られる. すなわち, これ等の化合物にお いては、一種類、またはそれ以上の陽イオンが陰 イオンである酸素を共有して結晶構造を形成して いるが、温度の上昇につれて、各原子の熱振動 幅、中でも酸素原子のそれが著しく増大してくる と,酸素との結合ポテンシアルが,ポテンシアル 最小値の位置からずれの調和項のみよりなる(主 として共有結合)か、非調和項をも含む(イオン 性の強い結合)かによって,酸素原子とこれ等陽 イオンの間の平均結合距離の変化の様相が全く異 なってくる. そして配位多面体における結合距離 の温度に応じた調整が可能な間は、その相は一般 に安定であるが、温度変化が更に進んで調整が不 可能になると共に、その相は消滅して、別の相 (必らずしも結晶相,単一相とは限らない)に変 化するのである、同様のことは、酸化物のみなら ず,陰イオンのイオン価の低い化合物である硫化 物,硫塩化合物,ハロゲン化物についても、あて はまるであろう. 以上を要するに, 高い温度にお いても安定な化合物とは、大きな熱エネルギーが 与えられても、それを原子の結晶内ポテンシアル と,熱振動エネルギーの形に等分配するように結 晶構造を調節する機能を有する物質であると換言 できる. 高融点の物質中に構造調整機能の自在な 構造を有する単純化合物が比較的多いのはこの事 実を反映している.

2.4.3.3 超高融点物質の概観

現在まで報告されている構造解析で実験温度が

1500℃を越えた例は、Ishizawa 等¹⁴⁾ によるのが 唯一である.彼等は、小型ガストーチを加熱手段 として、 α -Al₂O₃(コランダム)の融点近く(1897 ℃)における結晶構造を、室温と同程度の精度で 決定し(MoK α 線使用、2 θ の最大値90°)、室 温の構造との比較から、酸素の配列は最稠密充塡 に近づくこと、Al イオンは、最寄りの空隙サイ ドへ向って移動する傾向を示すことを明らかにし た.この例からも明らかなように、一見単純な構 造においても、温度の上昇に追随した何らかの構 造調整が進行する.

1500℃を超えるいわゆる超高温構造解析の分野 は、今、その出発点についたばかりである. とこ ろで、無機化合物の中で1500℃以上の温度域まで 存続しうるものとして、どのような物質系が考え られるであろうか.参考までに、ハンドブック15) に掲載された無機化合物のうち, 融点, 昇華点, も しくは分解点が1500℃以上であるものを抜粋,分 類し, 融点等を原子番号に対してプロットしたの が、図8である.この図を見ると幾つかの一般的 傾向が明らかになる.まず第一に存続温度域の上 限であるが, 硫化物2150℃ (Na₂S₃), 酸素酸塩ま たは複酸化物 2550℃ (ZrSiO₄), ほう化物 3000℃ (ZrB₂, TaB₂), 酸化物3050℃ (ThO₂), 窒化物 3360℃ (TaN),炭化物3860℃ (HfC) となってお り、概して、陰イオン価の高いもの程上限が高く なっていることがわかる.次に陽イオンのイオン 価から見ると、同図からも明瞭なように(C) Ti, Zr, Hf 等, 最近接の陰イオンによる八面体配位 を形成する傾向が強い3価乃至4価の陽イオン は,一般に高い融点を示す.その他,極めて注目 に値する事実は、アルカリ金属に関してである. 一般に,ある陽イオンの酸素酸塩もしくは複酸化 物の融点は、単純酸化物のそれに比してかなり低 くなる傾向があるが、アルカリ金属の場合、単純 酸化物より著しく高い融点を有する物質が幾つか 存在する.今日まで知られている化合物のうち融 点の高いグループに属するものはアルミン酸塩, アルミノけい酸塩, チタン酸であるが, 特に前2 者は(Al, Si) O₄四面体どうしが頂点の酸素を共 有し合うことによって構成される3次元網状骨格 の中にアルカリイオンが閉じ込められた形になっ ており、 またチタン酸の場合も、TiO₆八面体が 同様に頂点を共有し合うことにより構成される骨

超高温耐熱セラミックスの研究開発

単純酸化物	融点(℃)	酸素酸塩	融 点(℃)
Li ₂ O	>1700	LiAlO ₂	1900-2000
Na ₂ O	1275	NaAlO ₂	1800
		NaAlSiO ₄	1526
		$\mathrm{Na_{2}Ti_{6}O_{13}}$	130516)
K_2O	350	KAlSi ₂ O ₆	1686
	KAISiO ₄		1800
		$K_2Ti_4O_9$	111417)
		$K_2 Ti_6 O_{13}$	1370
Rb₂O	400	RbAlSi₂O ₆	1675
		$\mathrm{Rb}_{2}\mathrm{Ti}_{6}\mathrm{O}_{13}$	998 ¹⁶⁾
Cs ₂ O	400	$CsAlO_2$	1000
		$CsAlSi_2O_6$	>1700

表2 アルカリ金属の高融点酸素酸塩*

* 文献番号の与えられていない数値は文献15)による.

格構造であること、並びに、近年のアルミノけい 酸塩やチタン酸塩に関する高温構造解析によって 明らかになった事実、すなわち、これ等の骨格構 造においては、主として (Al, Si) O₄ 四面体や、 TO_6 八面体の回転によって、温度の上昇に伴う アルカリ金属一酸素間の平均距離の増大に対応し うる機能を有する事実を想起すれば、この種の化 合物が比較的高温まで安定である理由が容易に理 解しうる.これ等の結晶化学的知識は、例えば核 融合炉用ブランケット材、超イオン導電体等、ア ルカリ金属を主成分とする耐熱性セラミックスの 開発研究にとって必須であることは言うまでもな い(表 2).

2.4.3.4 超高温構造解析技術の課題

再び図8に戻ると、同図の著しい特徴として、 広義の酸化物(酸素酸塩、複酸化物)のデータが 圧倒的に多いことに気がつく.これは単に物質分 野から見た,超高温耐熱セラミックスの,これま での趨勢を反映しているに過ぎないのであって, 非酸化物の分野では,多成分系に関する研究が十 分に進められていないことを物語っている.

高温構造解析の分野においても事情は同様であ って、今日まで扱われてきた物質のほとんどが広 義の酸化物であり残るわずかも低融点の硫化物、 ハロゲン化物である.これ等の化合物に関して共 通に言えることは、陰イオンのイオン価が低い点 であり、これ等の物質の構造の温度変化を論じる に際しては専ら陽イオンのまわりの配位多面体の みに着目するだけでほぼ完全に問題が解決した. それに対して、これまでに常温においてなされ た、幾種類かのほう化物、窒化物、および炭化物 の構造解析の結果から、これ等の陰イオンは、そ

図9 非酸化物によく見られる陰イオンどうしの集団の例

のまわりに配位する陽イオンの配位多角形または 多面体の形について強い拘束力を及ぼすだけでな く,それ自身が短い結合距離で2個以上よりなる 集団をなし、この集団が単位となって陽イオンと の間に、結晶構造を形成している(図9).もち ろん非酸化物、このような特徴ある多価陰イオン の化合物に関する高温実験は、未だ皆無と言って よく、非酸化物を多く含む今後の超高温度域にお ける構造解析の結果については、単に陽イオンの みならず、陰イオンについても、そのまわりの異 種イオンの配位状態に関する配慮が必要である.

第2に温度因子に関する問題である.通常の構造解析においては、ブラック指数 hkl なる反射の強度 I (hkl) のうち、原子の配列状態を直接反映している項は $|F(hkl)|^2$ である. F (hkl) は一般に構造因子 (structure factor) と呼ばれ、単位格子胞中N個の原子が含まれているとした場合、

 $F(hkl) = \frac{N}{2} f_j T_j \exp 2\pi i (hX_j + kY_j + lZ_j)$

と表現される. ここで X_{j} , Y_{j} , Z_{j} は,単位格子 胞内における j 番目の原子の座標を格子の基本ベ クトル a, b, c に対する比として表わしたもの である. f_{J} は,完全静止した場合の j 番目原子の X線に対する散乱因子(原子散乱因子)であっ て,原子核のまわりの電子密度分布に由来してお り, sin θ/λ (θ …ブラグ角, λ …使用X線波長)に より変化する. T_{j} がいわゆる温度因子であっ て,各原子が独立に,等方的な調和振動を行なっ ていると仮定した場合,

 $T_i = \exp{-B_i(\sin\theta/\lambda)^2}$

と表わされる. これが等方性温度因子であって, j番目の原子の熱振動の平均振幅 を ū, とした場 合,

 $B_j = 8 \pi^2 \tilde{u}_j^2$

なる関係がある.

ところで、現実の結晶構造においては、1個の 原子を取りまく環境が、あらゆる方位に対して等 しいということはあり得ないわけであるから、こ のことを考慮して、平均振幅を、楕円体で表現す る試みがなされている.これが非等方性温度因子 と呼ばれるものであって、このとき、反射 hkl に 対して j 番目の温度因子は

 $T_{ij} = \exp - \{h^2 \beta_{j_{11}}^2 + k^2 \beta_{j_{22}} + l^2 \beta_{j_{33}} + 2 h k \beta_{j_{12}} \}$

 $+ 2 hl\beta_{j_{12}} + 2 kl\alpha_{j_{23}}$

と6つのパラメター { β_{jpq} } (1 \leq p,q \leq 3)を使っ て表現される.非等方性温度因子の導入によっ て、特に一次元,ないしは二次元的に平均振幅が 大きな熱振動の表現法は改善されたといえる.し かしながら,先にも一部言及した,四面体配位 や,八面体配位を取る傾向の強い多価イオン等に おいては,熱振動の格子統計も,これ等の配位空 間を反映しているはずである.こう言った観点か ら,更に多くのパラメターを使って, T_{ij} を逆格 子ベクトル, ha*, ka*, la* の四次の関数で表 現しようという提案が最なされているが¹⁸⁾,配位 多面体を取扱う機会が多く,かつ,各原子の熱振 動が極めて激しくなる超高温度域での結晶構造解 析には,この手法を採用する必要も生じるであろ う.

第3には,超高温構造解析技術の相平衡研究へ の活用である.一般に物質が,高温で唯一種の相 とし晶出したとしても, 必らずしもそのまま室温 まで存続されるとは限らない.冷却の段階で転移 点を通過することにより相転移を起こすこともあ れば、冷却途上でその系の固相線 (solvus) を切 ることにより、2相以上の結晶相に再分離する例 もしばしば見受けられる。後者の最も顕著な例と して、アポロ16号が月面で採集した灰長岩(anorthosite) 中の普通輝石 (augite, Ca²⁺, Mg²⁺, Fe²⁺ を 主たる陽イオンとするメタけい酸塩) の 単結晶中に酸素の稠密充填面や、特定の結晶学的 方位を共有した形で, クロムスピネルを始め, 十 余種の結晶相の析出した組織が、報告されてい る19)20). 各温度段階での相平衡の研究は、今日ま で伝統的に急冷法(quenching method) すなわ ち、問題の温度から試料を室温まで急冷し、室温 において試料のキャラクタリゼーションを行う という方法が採られてきた. ここには, あくま で、急冷することにより、高温の状態が保存され るという仮定が存在するわけであり、相の安定関 係について、異なった実験者の間で相矛盾する結 論が出されている例が 少くない. このような場 合, 試料系を問題とする高温度で直接キャラクタ ライズすることが必須であるが、本研究で確立さ れた超高温構造解析技術は、この目的に最適の手 段である.

2.4.3.5 超高温構造解析に期待される成果

以上. 超高温構造解析折術の確立 ま での 過程 を,実験システム,実験データ処理という両面か ら検討してきたが,この技術は,超高温セラミッ クスの研究にどのような寄与をなし得るであろう か.

まず第1に、室温より2500℃に至る温度域での 高精度構造解析が可能となる結果,特に構造解析 データが皆無に等しい1500℃以上の超高温度域で の非酸化物を含む各化合物系の結晶構造が、原子 間の結合距離・結合角、および各サイトにおける 原子の熱振動の状態として定量的にとらえられる 結果,各種化合物の構造形成原理(=結合状態), および外的条件の変動としての温度変化に対する 材質の応答としての構造変化のメカニズムが解明 されること、第2に、幾つかの多成分系について 各温度段階におけるX線単結晶法により裏づけら れた, 信頼度の高い相平衡関係ないしは, 固相・ 液相反応に関する情報が得られること、そして更 に、第3には、以上の情報の総合的な結果とし て, 各種超高温耐熱セラミックス開発のための科 学的指導原理が確立されることである.

参考文献

- R. E. Newnham, (Structure-Property Relations), Crystal Chemistry of Non-Materials, Springer-Verlag, (1975).
- R. A. Young and B. Post, Acta Crystallogr., A 15, 337, (1962).
- B. Post, R. S. Schwartz and I. Fankuchen, Rev. Sci.Instru., 22, 18, (1951).

- 4) 岡村富士夫, 材料科学, 14, 6, 317. (1977).
- 5) F. P. Okamura and S. Ghose, Contrib. Mineral. Petrol., 50, 211, (1975).
- F. P. Okamura and S. Ghose, Geol. Soc. Am. Abstracts with Programs, 7, 1218 (1975).
- J. K. Winter, S. Ghose and F. P. Okamura, Amer. Mineral., 62, 921, (1977).
- J. K. Winter, F. P. Okamura and S. Ghose, Amer. Mineral., 64, 409, (1979).
- T. Miyata, N. Ishizawa, I. Minato and S. Iwai, J. Appl. Cryst., 12, 303, (1979).
- 井上善三郎, 猪股吉三, 末野重穂, C. T. Prewitt, 日本鉱物学会1978年年会講演要旨集, 76, (1978).
- 井上善三郎, 日本結晶学会1978年年会 講演要旨 集, 31, (1978).
- 12) 沢田俊幸,大隅一政,竹内慶夫,定永両一,日本 結晶学会1979年年会講演要旨集,10.(1979).
- 13) 岩井津一, 私信, (1977).
- 14) N. Ishizawa, T. Miyata, I. Minato, F. Marumo and S. Iwai, Acta Cryst., B36, (1980).
- 15) R. C. Weast 編, Handbook of Chemistry and Physics, 51 st Ed., B 63, CRC, Ohio, (1970).
- 16) 三橋武文,田中英彦,藤木良規,第16回熱測定討 論会要旨集,3201 B,163,(1980).
- 17) 藤木良規,泉富士夫,大坂俊明,渡辺遵,窯協 誌,85,10,9,(1977).
- 18) Y. Ohashi, 私信, (1981).
- I. S. McCallum, F. P. Okamura and S. Ghose, Eearth Planet Sci. Lett., 26, 36, (1975).
- F. P. Okamura, I. S. McCallum, J. M. Stroh and S. Ghose, Proc. Lunar Sci. Conf. 7 th, 1889, (1976).

3. 高圧型帯域溶融装置の設計, 試作

前章では、帯域溶融法を超高温耐熱セラミック ス研究の手段とする研究方策について述べた.こ の実験計画を実行するには、高い性能を持つ帯域 溶融装置を設計,製作することが必要となる.2000 ℃を超えるような高温では、試料の蒸発や分解が 避け難いために加圧ガス中で帯域溶融を行なうこ とにより、試料の分解、揮発を抑制しなければな らない.この高圧型装置では、電気的絶縁体を含 む各種の高融点物質を扱えねばならないので、特 に高い集光密度を持ち、かつ高圧ガス中で操作で きるような赤外線集中型帯域溶融装置を設計、試 作することとした.

3.1 装置設計上の問題点

現在までに開発,実用されている赤外線集中型 帯域溶融装置では,その最高出力でアルミナ(融 点2054±6℃)が溶融できる.また最高20気圧ま での加圧ガス下での帯域溶融が実現できる.しか し,加圧ガス下で到達できる試料温度は気体圧力 の増加により低下し,数気圧の加圧ガス中ですア ルミナの溶融は困難になる.高圧ガス中で試料を 熱すると,相当量の熱がガスを熱するのに消費さ れ,高融点の試料を融解するのが困難になる.

本研究で高圧型装置を設計,製作するに当って 問題となる技術的課題の主なものは次の各点であ った.

- 加圧ガス中では、ガスによって試料が冷却 されることが予想されるが、冷却で失われる 熱量を推定するための資料が乏しい。
- ② 高圧ガスによる冷却に抗して、高い試料温度を得るには特に高い集光密度を得ることが必要である。現在の赤外線集中型帯域溶融装置は高い集光密度を追求した成果であるが、この集光密度を更に大幅に増大させるための方策を案出しなければならない。
- ③ 赤外線集中型帯域溶融装置は精密な光学系 であるために、これを高圧ガス容器と組み合 せることは技術的に未踏の分野に属する.試 料駆動部や光源を含む光学系全体を耐圧容器

の中に入れることが必要となり,高圧ガス容 器としては類例のない大口経の耐圧容器を製 作する成行きとなる.狭い耐圧容器中で,ラ ンプや試料溶融部から発生する熱を効果的に 除去してモーター類や光学系が過熱されない ようにすることは新しい経験となる.高圧ガ ス中で破損しない光源を作る,試料駆動部を 性能は維持しながら特に小さくし,高圧ガス 中でも順調に動くようにする,などの事柄も 全く新しい経験である.

この類の作業に経験のある読者ならば容易に 推察されるように,この高圧型帯域溶融装置は 装置設計技術的に見て困難を予想させる計画で あった.失敗は許されないので,この装置の設 計には慎重な予備実験を行なうことが必要であ った.

その他副次的ではあるが,実際上重要な次の 点に注意するべきであると考えた.

④ 高圧ガス容器を扱うことになるので、その 開閉、試料の脱着、各部の調整、危険防止等 に操作上繁雑さを生じ、作業能率が低下しな いようにくふうする.また圧入ガスが損耗す るなど運転経費が研究費を圧迫する恐れがあ るから可能なかぎり装置を自動化し、かつ内 容積を小さくするなどの注意が設計段階でゆ きとどいている必要がある.

装置設計技術とは別に,高圧ガスの中で試 料を帯域溶融させること自体に伴う問題も予想

- し得る.即ち高圧ガスは同時に高密度ガスであ
- る. 比較的大きな比熱と高い流動性を有してい
- る. その存在に伴う撹乱的要因として.
- ⑤ 気体が試料の周囲で加熱され、乱流となっ て上昇するために試料温度がゆらぐ.
- 同じく,試料附近に生ずる上昇気流のため,試料の温度分布も乱される.
- ⑦ 試料周囲の気体中に温度差による密度差と、そのゆらぎを生じ、これが光の試料への集中を妨げる。

これらの要因が、高圧ガスの中で良質の単結

晶を育成する際に妨げとなることは考えられる.しかしこれを重大視する立場には立たなかった.その理由は高温,ことに2000℃を超えるような温度における熱輻射の絶対値がいちじるしく大であるので,熱の移動速度が大きく,このために気体の存在に伴う撹乱的要因は相対的に小さくなるためである.気体の存在に伴う熱損失が試料温度の増大と共に,相対的に減少する様子は後述する第9図に見ることができる.

3.2 予備実験の方針

前項で述べた①および②の問題,即ち高圧ガス によって試料が冷却され,試料温度を上げにくい という事項は,本装置設計上決定的に重要な問題 である.

問題のエネルギーの流れを,次のように考えた.

高圧ガス← 試料← 光源 輻射光 固体を通ずる熱伝導

先ず,試料が高圧ガス中で失う熱量を推定する ために,試料の模型を作り,その熱損失を試料模 型の温度と,ガス圧力の関数として測定する.次 に,光源から試料へのエネルギー移動効率を同じ く模型実験で確認するという手順で試料を通過す るエネルギーの流れを高圧ガスの圧力の関数とし て求めようと考えた.この結果に基づき,具体的 な光学系について試料の到達可能な温度を推定算 出することができる.

3.3 試料の熱損失量に関する模型実験

試料が赤外線集中型帯域溶融装置内にあって, 高圧ガスと接しているとき,試料から高圧ガスへ の熱移動量を予測する目的で次の模型実験を試み た.まず,試料が溶融状態に保たれている状態を 模した発熱体を作った.これは試料の大きさ,形 状に似せた円柱状で直立しており,その中央部に 抵抗発熱体を巻付け,熱電対を組込んだものであ って,この模型の到達温度を抵抗発熱体への入力 と,気体の圧力の関数として測定することを試み た.

測定に用いた発熱体の形状は第1図に示す通り である. 外径 10 mm, 内径 6 mm のアルミナ管 にピッチ1 mm のみぞを切り, これに径 0.5 mm

出発組成;B:C=4:1(モル比) 図1 熱損失量測定のための試料模型

の Ir (60%) Rh (40%) 合金線を巻付けること により,長さ 10mm,径 10mmの発熱体を作っ た.アルミナ管の内部はアルミナ粉末によってす き間なく埋めた.このように作られた発熱体円柱 を直立させ,耐圧容器内径80mm,有効高さ1000 mmの中心部に置き,1000kg/cm²までのアルゴ ンガスをこの容器内に圧入した後,Ir・Rh 線に電 流を流して温度を上昇させた.耐圧容器は水冷し て温度を室温に保った.

この発熱体の温度はアルミナ管に埋込まれた Pt-PtRh (13%)熱電対を用いて測定した.即ち 第1図に示すように,Ir・Rh線のすぐ内側に外径 2mm,6穴のアルミナ質絶縁管を埋め,0.3mm 径の熱電対を通して5点の温度測定を行った.温 度測定部位は第1図に矢印で示した.即ち発熱体 の中央部,発熱体の上端および下端,発熱体から 上下各々10mm離れた部位である.これらの測定 点から,この円筒状発熱体のたて方向の温度分布 を測定することができた.

第2図では、この発熱体円柱を全く保温せずに 直立させておき、Ir・Rh 合金線に一定電圧をかけ て発熱させた場合について、定常状態における温 度がアルゴンガスの圧力に依存する様子を示し た.気体圧力が数百気圧増大するだけで発熱体円 柱の温度は著しく低下してしまうことが判る.例 えば、1気圧で1025℃であったものが100気圧で 506℃に、500気圧では234℃に低下してしまう. 但しここで発熱体の温度は発熱体の中心部③にお ける温度で代表させている.高圧ガス共存下で は、最高温部が1~2mm程度上方に移動するこ

とが認められたが、最高温部と中心部③の温度と の差は20℃以下であると推定されたので、以下で は温度分布の変化を無視することとした.

発熱体に一定電圧をかけた状態でガス圧力を変 化させると、大幅に温度が変動し、その結果発熱 体の電気抵抗が変化してしまう.このため、第2 図に示した結果は用いた抵抗発熱体の温度特性が 重畳したものとなっている.この点を考慮し、発 熱体の発熱量を一定に保ったままアルゴンガスの 圧力を変化させて、発熱体の定常状態における温 度を測定したのが第3図である.

このような測定で目立つことは、常圧において 温度が高く、発熱量が大きな場合には、ガス圧力 の増加に伴う温度低下が比較的少いことである. 例えば第3図において、1気圧で1720℃であった ものが、100気圧では1350℃まで約370°低下す るのに対して、常圧で1060℃であった場合には 100気圧で500℃まで510°低下している.

高圧ガスの存在によって生ずる熱損失を輻射に よる損失やアルミナ管の熱伝導などによって生ず る損失から区別して測定することができれば、そ れが近似的分離であっても役立ちうる可能性があ る.この目的から、気体の圧力を一定に保ち、模 型の温度を変化させて熱損失を測定することを試 みた.得られた結果は第4図に示してある.この 図では耐圧容器内を 10⁻³ torr 程度に排気した場 合を、アルゴンガスを圧入した場合に比較してあ る.ここで排気した場合の測定結果は、気体によ

図3 試料模型の温度.発熱体への供 給電力を一定に保った状態でア ルゴンガスの圧力を変化させた

模型温度と、供給電力との関係

っては冷却されない場合を表していて、輻射およ び固体を通じて起こる熱伝導による熱損失のみが 模型への入力につり合って定常状態に達したもの と考えられる.

この第4図において,排気した場合の熱損失対 平衡温度曲線は温度が高くなるに伴って熱損失の 増分が大きくなる下方に凸の曲線となっている. この曲線の形状からみて,輻射による熱損失が全 損失の中でしめる割合がことに1000℃以上では大 きいであろうと推測される.この排気した場合の

熱損失を気体を加圧した場合の熱損失から差引け ば気体の存在によって生ずる熱損失のみを,近似 的にではあるが他の熱損失から分離することがで きる.このような見地から,第4図に示した結果 を用いて,差引を実行した結果を第5図に示した.

第5図に示されるたて軸は、したがって高圧ガ スによって運び去られる熱量を意味している.こ の気体によって運び去られる熱量は発熱体と、周 囲の気体との温度差に比例しているように見え る.即ち第5図の各測定点は原点を通る直線上に 並んでいる.

第5図における各直線の勾配,即ち高圧ガスに よって運び去られる熱量の温度係数は一見して明 らかなように、気体の圧力には比例していない. このような高圧ガスでは気体の圧力が気体の密度 とは比例関係にない.気体の密度は、単位体積中 に存在する分子数に比例する量であり、圧力の異 る気体を相互に比較する際に基本となる量である と考えられる.そこで、第5図における各直線の

勾配を気体の密度の関数として画いたのが第6図 である. 横軸の気体の密度としては室温における アルゴンガスの密度を用いた. これは模型とした 発熱体円柱の周囲にあって未だ熱せられていない 気体の密度を用いたことになる. 但しここで用い たアルゴンガスの密度は Michels および Wijker (1949)によって求められた値である.

第6図における4個の測定点,即ち1,000 kg/ cm²,200 kg/cm²,100 kg/cm²,50 kg/cm² にお ける熱損失対温度差の勾配は室温におけるアルゴ ンガスの密度と比例関係にあって,原点を通る1 本の直線上に並んでいるように見える.本実験に おける実験誤差の範囲内では,この比例関係は成 立していてその比例定数は1.3×10⁻³W/deg• Amagat U. であると結論される.

以上の実験結果からすれば、次のように結論す ることができる.

結論

帯域溶融法で試料を高温に保持する際に, 試料 が50気圧以上1000気圧未満の室温に保たれたアル ゴンガスと接し,対流を生じて熱を運び去られる ことによって生ずる熱損失は, 試料とアルゴンガ スの温度差,およびアルゴンガスの密度に比例す る. 試料の表面積が熱損失と比例するここが自明 であるとすれば, アルゴンガスの存在によって生 ずる熱損失Qは次式で表される.

 $Q = C \cdot S \cdot \Delta T \cdot D$

但し C=4.1×10⁻⁴W/cm²・deg・Amagat U.

ここで C は比例定数, S は試料の表面積, dT は試料とアルゴンガスとの温度差, D はアルゴン

ガスの密度である.

註1 試料表面を気体分子が冷却する現象が複雑であ るのは、気体が流動することによるだけではな く、気体の熱伝導率それ自体が気体密度の複雑な 関数であるためである。気体の熱的特性が気体の 密度によって大幅に変化するために、本実験のよ うな場合について試料の熱損失を実験によらずに 算出することは容易でない。低圧の気体について は単純なモデルを立てて計算することができるの で、そのような計算を実行してみると次のように なる。

気体によって発熱体表面が冷却される現象を最 も単純に考えると、室温の気体分子が発熱体表面 に拡散,衝突して熱せられ,高温の気体分子とし て飛び去ることによって生ずる現象であると考え ることができる.この場合,この発熱体表面で失 われるエネルギーは,この気体が単原子分子のア ルゴンであることを考慮すれば1回の衝突に付き

 $(3/2)k(T_2-T_1)$...(1)

但しここで **T**₂, **T**₁ は各々発熱体表面,および 周囲気体の温度である.

気体分子の,発熱体表面への衝突回数は単位体 積中に存在する気体の分子数をn,気体分子の平 均飛行速度を v とすると単位被面積当り毎秒

n[〒]6 …(2) ここで (1/2)m^{〒2}=(3/2)kT₁ であること を考

慮すれば, v=(3kT₁/m)^{1/2} ...(3)

但しmは気体分子1個の質量である.これらの 式(1),(2),(3)から,気体による冷却速度は単位表 面積,単位時間に付き

 $(3/2)k(T_1 - T_2) \cdot (n/6)(3kT_1/m)^{1/2}$

 $=(3/2)R(T_1-T_2)(n/6 N)(3 RT_1/M)^{1/2}$

但しここでN, M, Rは各々アボガドロ数, 気体の分子量および気体定数である.

この式を用いて、温度差 1 deg 当り、1 気圧当 りについてこの値を永めると $T_2 - T_1 = 1$, n/N =1/22.4×10³から、平方センチ当りでは 3.93 W となる. 実験的に得られた本研究結果では 4.1× 10⁻⁴W であるから、このような計算と実験 では 10⁴ 倍異ることとなる.

一般に、上記の種類の計算は気体分子の平均自 由行路が熱伝導測定に用いられる装置の、測定に 効く部分の長さと同程度となるような高真空領域 であてはまり、常圧に近い圧力範囲では成立しな い.また常圧近傍で成立する関係式は、分子の大 きさが分子の平均自由行路と比較して無視できな いような高圧の気体についてはかなりのずれを示 して成立しなくなることが知られてる.

註2 この場合は、Amagat Unit は 0℃、1気圧に
 おける、その気体の密度を単位としたもの、0℃、
 1気圧でのアルゴンガスの密度は 1.784 g/l である。

3.4 光源から試料へのエネルギー移動 効率

赤外線集中型帯域溶融装置において、光源に入 力された電気的エネルギーのうち、光エネルギー として集光されて試料に吸収される割合、即ち装 置のエネルギー効率は基本的な量であって、これ についての情報なしには装置を設計することはで きない.このエネルギー特性は一種の総合特性で あって種々の要因で大幅に影響されるために一義 的な予測が困難である.即ち光学系の設計以外に 光学系の調整,および試料の表面状態や試料物質 の反射率,吸収率の波長特性などに依存する量で ある.

このような事情から,ここでは試料および装置 を具体的に想定して、その場合のエネルギー移動 効率を求め, これを以下の設計作業に代表的な数 値として用いることにしたい.装置としては,ニ チデン機械㈱製の単楕円型帯域溶融装置を用い, 試料に相当するものとして前項で試料の熱損失量 測定に用いた試料模型をそのまま用いてエネルギ -移動効率の測定を試みた.即ち、この試料模型 を単楕円型反射球の試料部に装置し,加熱用光源 として用いられているハロゲンランプに通電して 模型を熱し、そのときのハロゲンランプへの入力 と模型の温度との関係を測定したのである. ま た, 試料模型を反射球の試料部に設置したまま, 光源にではなく,模型に直接通電して模型を加熱 した場合の消費電力対模型温度の関係 を 測 定 し た. これら2種の測定は第7図に点と実線で示し te.

光源からの光によって模型を加熱した場合に必要な消費電力は、模型に直接通電して熱した場合 に比較して多い.この差は光源内部で光となら ず、またはランプの外壁に用いられている石英ガ ラスに吸収され光源外部に出られなかった光など 熱として散逸したエネルギー、反射球内部で迷光 となり、または反射面で吸収されて試料模型に集 光されなかった光、および集光され、試料模型に

超高温耐熱セラミックスの研究開発

入射したが反射されまたは透過して試料模型に吸 収されなかった光エネルギーの和に相当する.

模型に直接通電して一定の入力を与えたとき, ある温度で定常状態に達したとすると,そのとき の入力即ち消費電力はその試料模型を反射球内で その温度に保持する際に必要なエネルギー供給率 に等しい.したがって,そのときの入力はエネル ギー移動効率 100% のときに光源が消費するはず の電力に等しいとみなせる.

このような理由から,試料模型に通電加熱した ときの温度・入力曲線を基準として,集光加熱の 際のエネルギー移動効率を各測定点(温度・入 力)について個々に算出することができる.第7 図に示した結果から,600~1600℃の温度範囲に 融解したときでも余り変化しないのであろう.反 対に Fe を含む酸化物は光を吸収しやすく,結果 おけるエネルギー移動効率は約33%で事実上一定 であった.

光源や試料の分光学的特性によってエネルギー 移動効率が変化する様子を知るために,第7図に は,融点が知られている試料について,試料を溶 解するに要した光源への入力を白ぬきの丸で示し ておいた.この結果では,試料温度と光源入力と の間に一義的関係は近似的にも見出せない.試料 物質の反射率,吸収率の波長特性によってエネル ギー移動効率は極端に変化することが推定され る.例えば Al 金属は融点が低いのに,これを融 解するに要する光源への入力は 700 W を超えて おり,特に低いエネルギー移動効率となってい る.Al 金属は広い波長範囲で高い反射率を有し ているために,反射鏡の反射面に用いられる材料 のひとつである.この高い反射率は,Al 金属が としてエネルギー移動効率は高い.ただしこの場 合のエネルギー移動効率は各試料毎に測定精度が 異り,数割の誤差を含む極く近似的なものであ る.その原因は,試料融体円柱の径が各試料毎に 違っていて,約5~8mmの範囲にあり,試料融 体の高さも一定ではなかった.概して試料融体の 体積は模型に比して小さく、したがってエネルギ ー移動効率は高めに計算されてしまう.また,各 試料の輻射率は試料模型の輻射率と同一ではな い,などの事情があるためである.

以上の事情を考慮しながら第7図を見ると,試 料模型について算出されたエネルギー移動効率は 各種試料の平均値として容認し得る値であると結 論できる.

3.5 光学系によるエネルギー集中量の 上限

本装置では、試料を高温に熱する必要があるの に、試料が高圧ガスによって冷却されることが問 題であった.この冷却に抗して、より多くのエネ ルギーを光学系による集光によって供給すること が本設計の課題である.

このエネルギー供給の上限を支配する要素とし て次の3項目を挙げることができる.

(1) 反射球のエネルギー移動効率

- (2) 光源の輝度
- (3) 光源と反射球の個数

ここで個数とは,複数個以上の光源から1個の 試料に光を集中する方式における光源と,回転楕 円反射球の数のことである.

装置設計の観点から見たとき,(1)の要素は主と して回転楕円反射面,光源および試料の3者間の 相対的大きさに依存し,また回転楕円反射面の仕 上げ精度,反射率,および光源や試料の位置設定 精度に依存する.

原理的には、回転楕円反射面の大きさに比して 光源の大きさが無限小で近似できる程度であれ ば、そのときの集光効率は1に近くできるはずで ある.しかし実際には光源は数ミリメートル以上 の大きさを持っており、他方回転楕円反射球を大 きくすることは実際面で制約がある.

実用機として作られた上述の単楕円 装置の場合,回転楕円反射球の長径,短径はそれぞれ約17 cm, 15.5 cm であって,光源のタングステンフ

ィラメントは外径約 6 mm, 長さ約 20 mm である. この数値からみて,回転楕円反射球の大きさに対する光源の大きさが全く無視できないものであることが判る.

今回の設計では、反射球を耐圧容器に入れねば ならない関係で、回転楕円反射球を大きくするこ とに厳しい制約が伴う.この件に関連して、光源 が点でなく有限の大きさを持つことを考慮したミ ュミレーション計算を行った.この近似計算によ れば、光源の大きさおよび反射球の大きさが実用 的である場合光学系の集光効率を大幅に増大させ ることは困難であることが数値によって示され た.

上述の単楕円装置は、エネルギー移動効率とい う点からして、反射球の仕上げ精度や、光源や試 料の位置精度等が充分であって、事実上理想的に 作動している.前節で求めたエネルギー移動効率 約30%という値はこのような事情で実現されたも のであるから、本設計で回転楕円反射球のエネル ギー移動効率を現在使用されている装置よりも大 幅に上昇させ得ると期待できる余地は残ってはい ない.

エネルギー集中量の上限を支配する第2の要素 は、光源の輝度であった.上述の模型実験に用い た単楕円装置の場合、光源のハロゲンランプを最 大出力、1.5 kW で作動させると数十時間以内に 切れてしまう.この場合タングステンフィラメン トは、その融点 3660°K に比較して実質的に余り 低くない温度である 3400°K で使用されている. この温度を更にあげて輝度の大幅な増加を計るこ とは明らかに不可である.

高輝度,高出力の光源としてはキセノンランプ がその第1に挙げられるであろう.残念ながら, 高圧ガスの中でこのランプを動作させるには,こ のランプ耐圧が問題となり,このために本設計で はこれを採用することができなかった.

エネルギー集中量の上限を支配する第1,第2 の要素についての上記の事情から,1個の回転楕 円反射球によって集中させ得る光エネルギーの量 には事実上の上限が存在するという結論が導き出 せる.上述した単楕円型の装置では,その上限が 約500 W 程度であった.

光学系によるエネルギー集中量の上限を支配す る第3の要素は光源と反射球の個数であった. エ ネルギー移動効率を低めることなく複数個の回転 楕円反射球を組合せることにより,複数個の光源 のエネルギーを1個の試料に集中させることがで きれば,エネルギー集中量の上限は大幅に増加さ せることができる.

回転楕円反射球を複数個組合せて用いる場合, 試料を置く位置は各回転楕円反射球に共有される 焦点であることになる.してがってその共有され る焦点の近くでは、回転楕円反射球は互に重り合 うことになるから、回転楕円反射球のその部分は 切り欠かれてしまうことになる.そのような切り 欠きを生ずることが楕円球のエネルギー移動効率 の低下につながらないようにすることが問題であ る.原理的には、この切り欠き部を見込む立体角 は楕円の離心率に依存し、長楕円になるほど小さ くなる.

したがって充分に長い楕円を使用することがで きれば、多数個の光源から1個の試料へ、エネル ギー移動効率を損うことなく光を集中できるであ ろう.しかも実際には、さほどの長楕円にしなく とも、効率を事実上低下させずに回転楕円反射球 を組み合せることができる.その理由はハロゲン ランプの配光特性にある.

ハロゲンランプのタングステンフィラメントを 長楕円回転反射球の焦点に置く場合には,そのタ ングステンフィラメントの2重コイルの軸は当然 反射球の回転軸と一致させることとなる.その場 合,この軸方向への照度は無視できる程度に低い ために,この軸の延長方向であるもう1つの焦点 の近傍で反射面が切り欠かれても事実上エネルギ ー移動効率の低下につながらないようにすること

図8 ハロゲンランプの配光特性

が可能なのである.

第8図に、一般的なハロゲンランプの配光特性 を示す、ハロゲンランプから反射球の切り欠き部 を見込む角度が20°~30°以下であれば、集光効率 は反射面の切り欠きによって事実上低下しないこ とが判る.

このため, 焦点を共有した形に回転楕円反射球 を組合せることは容易で, その意味では光学系に よるエネルギー集中量を大幅に増加させ得ると結 論できる.

3.6 試料の熱損失と光学系の構成

前記 3.3 および 3.4 に述べた実験結果から, 試料の熱損失についての推定値が試料温度と気体圧力の関数として得られる. その結果を第9図に示

した. この結果によれば,高圧ガス共存下で2000 ℃以上の高温を維持するためには、少くとも 1kW 程度またはそれ以上の熱損失に耐えられな ければならないことが判る.

1 kW 以上のエネルギーを光学系を通じて試料 に伝達させるためには、前節3.5 に詳述したよう に反射球と光源の個数を増すことが不可欠の条件 となる.前記3.4 で述べた単楕円型帯域溶融装置 におけるエネルギー集中量の上限が約500 W,即 ち1.5 kW 入力の光源に対してエネルギー移動効 率が約30%であったことからみて、少くとも3個 以上の反射球を組合せた光学系を作ることが望ま しいと結論することができる.

このような事情から、今回の設計では4個の回 転楕円反射球を水平面上に配列する方式を採用す ることとした.第10図はこの平面図である.この

光学系の平面図

楕円の長径, 短径は各々 320 mm, および 200 mm である. 即ち回転楕円

 $x^2/a^2 + (y^2 + z^2)/b^2 = 1$

における a=160 mm, b=100 mm である.

第9図には光源の照度分布を重ねて 画いてみ た.光源からの照度が高い角度領域が、反射球に よって輻射が有効に試料に集中される角度領域と ほぼ一致していることから,回転楕円4個を組合 せたことによって生ずる反射面の切り欠きは無視 できる程度に止まる.しかし、このような長楕円 を採用した結果、図に見られるように焦点が反射 面に近く位置することになり、そのためにタング ステンフィラメントの大きさの効果が拡大され, 集光効率の低下を招いている. 反射球を大きくで きれば、このような負の効果は減少させられるで あろう.残念ながら、耐圧容器に入れねばならな いという強い制約から、反射球の寸法を第9図の 案以上に増大させることはできなかった. 用いる 光源はフィラメント素線径 0.4 mm, 一重コイル 外径 1.8 mm, 同巻ピッチ 0.7 mm, 二重コイル 中心径6mm, 同巻ピッチ3mmの9巻で全長27 mm, 最大入力2kW である. この数値は, 現在 赤外線集中炉で安定した特性を示しているハロゲ ンランプ諸元をそのままに近く流用したものであ る.

以上の計画案に対して想定したエネルギー移動

効率は約15%, 4個の光源から約1.2kWの光エ ネルギーを試料に吸収させ得るという試算結果と なった.この値は200気圧のアルゴンガス中にお いて2000℃を十分上回る温度で試料を溶融するこ とができるものである.

3.7 耐圧容器の構成

赤外線帯域溶融装置を高圧ガス容器と組合せて 試料部を高圧ガス中に保持する際には2つの方式 が考えられる.その第1は試料部のみを透明な円 筒で囲み、その中の試料とその保持部のみを加圧 ガス中に置く方式である.このとき透明な円筒と しては石英ガラス厚肉管を用い、約20気圧程度の 気体中で作動可能な装置を製作できる.この石英 ガラス管には熱と力が同時にかかることになるの で試料温度や気体圧力に制約を伴う.第2の方式 は試料部のみでなく、帯域溶融装置全体を高圧ガ ス中に置くことで、特に高い試料温度や、高圧ガ スを用いる際に望ましいやり方である.本装置で は、その実験目的から見て後者の方式を採用する ことが不可避であった.

赤外線帯溶融装置全体を高圧ガス容器に納める 場合, 試料観察用窓, 冷却水導入管, 各種電線約20 本の導入用耐圧絶縁端子、および光源等を気体流 で冷却するための気体流入出口を備えた大型の耐 圧容器を必要とすることになる.本来,耐圧容器 は内容物の圧力によって多少の変形を繰返すもの であり,他方帯域溶融装置の光学系は変形を極力 避けなければならない. それで帯域溶融装置の光 学系と試料の回転、送り装置は耐圧容器の蓋一個 所のみに固定し、耐圧容器の他の部分との接触を 避けるという方策を採用した.即ち,帯域溶融装 置全体を耐圧容器の蓋に固定し、耐圧容器中に挿 入する方式とする必要があったのである. この結 果,耐圧容器の形状は単純な円筒型となったが, 光学系の大きさを反映してその内径は600mmと 極めて大型の耐圧容器となってしまった.

第11図 a, b には完成した耐圧容器を示した. 耐圧容器の内径を極力小さくするために, 円筒型 容器の中心軸が水平になるように設置し, 軸方向 に水平に移動させて開閉する方式となっている. このようにすると, 回転楕円反射球の軸が耐圧容 器円筒の中心軸と水平面内で互に 45°の角度で交 差する形に設置できるので, 耐圧容器の内径が小

図11a 耐圧容器の側面, 蓋を押える押ねじが 見える

図11b 耐圧容器を横後方から見たところ.耐 E容器本体は架台に乗り、レール上を 水平に移動することにより開閉する

さく取れるのである.

耐圧容器を設計する際の前提として、耐圧容器 の開閉が事実上自動化できること、および帯域溶 融装置に自由に接近して調整等の操作ができるこ と、の2点が実現可能な方式を取らねばならない ことは明らかであった.この円筒横置型方式で、 この条件は実現できることとなった.約2トンの 耐圧容器本体は、蓋から外してレール上を後退さ せることができ、帯域溶融装置はテーブルに置か れたような形で扱うことができる.そしてこの開 閉操作はわずかの費用で自動化できるのである.

しかし大口径であることは技術的な課題を与え ることとなった.耐圧容器の蓋と,容器本体との 間のすき間から気体が漏れ出ることを防止するた めの圧力シール部の機構が問題となったのであ る.この圧力シール部には0リングを用いること が,開閉操作を単純化する上で必要だった.耐圧 容器に0リングシールを用いる際には,通常蓋と 容器本体の間の圧力シール部の間隙は0.1mm以 下とする. これは0リングが高圧ガスに圧迫され て間隙から流れ出るのを防止するためである. 小 口径の容器であれば, この間隙を小さくすること は容易である. 通常は1インチ程度の口径である から, 手で注意深くはめ合せれば足りるのであ る. 口径が600mmもの大口径では旋盤上でけず り上ったものの径を百分の1ミリメートルの桁で 読み取るだけですでに特別の装置を必要とし,更 にこの精度で蓋と本体を嵌め合うためには特別な 機構が必要で, 耐圧容器として実用することはで きないのである.

この問題を解決するために、0リングに組合せるバックアップリングに特別の工夫を施すことにした.第12図にその機構を説明するための概念図

図12 大口経耐圧容益にO リシクシールを用い るため考案されたバックアップリングの 概念図

を示した. 通常のバックアップリングではなく, 断面がほぼ三角形のバックアップリングが組込ま れている. この, 断面三角形のバックアップリン グは、その外径が耐圧容器本体の内径よりも1 mm程度小さく,通常は0.5 mm程度の間隙で本 体内壁と離れているが, 高圧ガスが容器内に入っ た状態では0リングに押されて傾斜面をすべるた めに径が広がり、耐圧容器本体内壁に密着するこ とになって0リングを保護する役割を果す.この ときのバックアップリングの変形は1000分の2程 度であって,このように変形率が小さいのは,耐 圧容器の口径が大きいためである. このため、バ ックアップリングの材質を硬く流れにくいものと することができ,蓋と耐圧容器本体との間隙を大 きくとることが可能となって, 操作性のよい耐圧 容器を実現することができた.

帯域溶融装置全体を耐圧容器に入れる方式を採 用することに伴って処理しなければならない問題 が多く生じたが、ここでは2、3の問題に限って その様子を説明するに止め、冗長を避けたい.

問題の1つはモーターを使用した駆動装置を高 圧ガスで実動させた実績がないことである.むし ろ,経験的にはうまく作動しない場合が多いとさ れていた.

高圧ガス中でモーターを駆動させる場合,問題 となるのは,まず油の蒸発である.

室温における高圧ガスは通常の気体の密度とは 異っていてむしろ液体に近い密度を有しているの で、機械油のように蒸気圧の低い液体でも"溶 解"させて運び去ってしまう.

油が全くなければ焼付いてしまう構造のモータ ーであれば高圧ガス中で使うことはできない.次 に考えられることはプラスチックが使用してあっ た可能性である.高圧のアルゴンガスは有機物に 溶解してこれを膨潤させ寸法を変えてしまう.そ のために回転子に摩擦を生ずるようであればモー ターは止ってしまうであろう.幸に,そのような モーターはいずれも熱に弱いはずで,最近のモー ターの耐熱性は向上しているためにほとんどのモ ーターが使用可能であろうと結論できた.最後に 考えられることは温度上昇である.耐圧容器内部 は狭いので,長時間モーターを運転すれば温度上 昇は当然生じ,焼付いて動かなくなる可能性は強 い.注意深い冷却は不可欠なのである.

今回の耐圧容器内径は 600 mm, 長さ 700 mm で,その中に2kW×4個の電力を導入し,その 全部が熱に変換されてしまう設計であるから,こ の冷却に注意が必要なのは当然である.

そこで、実際に小型モーターを1000気圧のアル ゴンガス中で作動させ、充分に使用できることを 確認した.

次に耐圧型のハロゲンランプの高圧ガス中での 点燈テストを行った.

第14図には冷却不足で破損したハロゲンラント を示した.このランプは第13図に示したように設 置して耐圧容器中,300気圧のアルゴン存在下で 2kW入力テストを行なったものである.テスト を終了して耐圧容器から取出されたときには無傷 で,ただタングステンフィラメントに近い石英ガ ラス内壁にタングステン金属膜と思われる物が付

図13 ハロゲンランプの耐圧試験のた めに、ランプが耐圧容器の試料 ホルダーに装着されたところ

図14 耐圧テストでは破損せず,降圧 して大気圧中に取出し室温下約 1時間経過したとき破損した耐 圧型ハロゲンランプ,冷却不足 が原因

着していた. この ランプ は ハロゲンランプ なの で,高温度部分にはタングステン金属が分解析出 し付着する性質を持っている.第14図に見られる 石英ガラスのひび割れは,上記テストを終了して 耐圧容器から取出した後約1時間で発生した.単 なる対流でランプを冷却しようとすると破損して しまうことが判明したことになる.このため光源 はアルゴンガス流を吹付ける強制空冷方式で冷却 することになり,気体をポンプによって巡還させ る方式を採用することとなった.

4. 超高融点物質の単結晶育成と相平衡研究

4.1 B-C 系の相平衡 と B₄C 単結晶 の育成

4.1.1 緒 言

次代の核エネルギー利用法として本命視され, 研究が急がれている高速増殖炉 (Fast Breader Reactor FBR) において,最も重要視されてい る制御棒は B₄C ペレットである.したがって, 熱中性子との作用性の観点から, B/C 比, ペレ ットの構造.スエリング,放射線損傷, He の放 出等についての精細な研究が進められている.

本研究においては、浮遊帯域徐冷法を用いて、 B/C 比、すなわち、 B_4C の固溶領域の存在とそ の範囲について検討した.また、基本的な物性測 定に供するため、キャノン式赤外線集中炉を用い た浮遊帯域法による大型単結晶育成を試み、双晶 を含まない良質な単結晶の育成に成功した.

従来、 B_4C 単結晶は電融法によって合成されて いるが、ほとんどが双晶を含む小さなグレインの 集合体となっており、単結晶を用いた種々な物性 測定には不向きであったが、今回の単結晶育成の 成功によって、 B_4C に関する基礎的な物性データ の集積が進むものと期待される.

4.1.2 B-C 系の状態図と B₄C の固溶領域

図1に、これまでに報告されている B-C 系状 態図のうち、代表的なものを示す. 図1(A)は、 Samsonov 等の報告しているもの¹⁾、図1(B)は Elliott²⁾の提案図である.

これによると、 B-C 等の化合物のうち、 最も 重要である B₄C についても、Samsonov 等は分 解融解説、Elliott は調和融解説を提案しており、 また固溶領域の範囲についても、この両者には、 かなりの相違がある.そこで、浮遊帯域徐冷法を 用いて、B₄C の融解性状、固溶領域の範囲につい て検討した.

(i) 実 験

出発原料として B₄C (純度 99%, 電気化学㈱ 製),炭素 (純度99.9%, 日本カーボン㈱製),ほ う素 (純度, 試薬一級, Hermann C. Starck Co.,

(A) Samsonov による報告

Berlin)の粉末試薬を用い,これらをそれぞれ秤 量後,湿式混合し,約 1000 kg/cm²の加圧下で ラバープレス法にて,径5~8 mm,長さ50~100 mm程度の丸棒状に成型した.成型棒は,真空中 (10⁻³mmHg 程度),1800℃で焼成して,実験に 供した.

実験に使用した赤外線集中炉は,第2章で述べたものと同じ型のもので,最大出力6.5kWの空冷式キセノンランプ1灯式のものである.

集光炉の上,下の各保持棒に焼結棒をセット し,先端部を融解させて接合し,上,下の保持棒 は,互いに逆に,毎分60回の回転を与えた.雰囲 気にはアルゴンガスを毎分10ℓ流した.

上,下2本の焼結棒の先端部を融解,接合後, 30分間このままの状態に保持し,次いで、ランプ 印加電力をゆっくり減らしながら,同時に,上下 のシャフトはゆっくりと切り離しを行なった.こ の時,固液界面の移動速度は大体1mm/hr 程度 となるよう,ランプ印加電力の減少速度,シャフ トの移動速度を調節した.

約4時間後,全ての融液が固化したら,ランプ 印加電力を切断し,放冷後,2本の固化棒を得 た.固化棒は長さ方向に二ッ割し,切断面をダイ ヤモンドペレットを用いて研磨後,光学顕微鏡, EPMA を用いる組成,組織分析を行なった.

(ii) 結果と考察

浮遊帯域徐冷法によって得られた固化棒の写真 を図2に示す.図2は、B:C=3:1の場合の 固化棒の切断面の反射顕微鏡写真である.図から 直ちに判るように、出発組成B:C=4:1の場 合には、何の組成変化も認められなかったが、出

出発組成;3:1 図 2 SCFZ 実験によって得られた固化棒の断面図

発組成B:C=3:1の場合には組成変化に伴う 累帯構造が観察される.

図3は図2の拡大図を示す.この図から,3つ の領域の存在が知れる.第1領域は,最初の焼結 棒,第2領域は融解して固化した部分で,単相で あることが判る.また,この領域の EPMA 観察 による結果では何ら組成変化は見出されなかっ た.第3領域においては,典型的な,共晶組織が 観察される.

図4は、第3領域のX線像であり、図4(a)はほう素の、また図4(b)は炭素のX線像をそれぞれ示す.この図から、この第3領域の共晶組織は B_4C とCで形成されていることが判る.このことは、この領域の粉末X線回析、EPMA分析によっても確かめられた.

出発組成がB:C=4:1よりもほう素側,例 えば、B:C=5:1もしくは6:1の組成比の ものについても、上述の浮遊帯域徐冷法の適用を 試みたが、試料からの蒸発が激しく、満足な結果 は得られなかった.

以上の結果から、B-C2成分系の相関係につい ては、全域について検討はできなかったが、少く とも B_4C の融解性状については、これは調和融 解化合物であること、また、物性値との相関にお いて重要な意味をもつ固溶領域については、ほと んど存在しないという結論が得られた.

4.1.3 B₄C 単結晶の育成

4.1.2 に述べた B-C 2成分系の 浮遊帯域徐冷 法による相平衡研究と同様の装置,出発試料棒を 用いて単結晶の育成を行なった.但し,相平衡研 究の場合には,上,下の2つのシャフトは,上, 下に切り離されたが,単結晶育成の場合には,

図3 図2の固化部の拡大図(微分干渉顕微鏡)

超高温耐熱セラミックスの研究開発

図 4 第 3 領域の X 線像, (a)はほう素, (b)は炭素の X 線像を示す

上,下のシャフトは同時に下方に移動される.シ ャフトの移動速度,即ち,結晶育成速度について は毎時2,4,8mmの各育成速度について検討 した.

最初の実験は焼結棒を種子として用いたが、この実験によって得られた単結晶片を切り出し、これを種子として用いる育成も行なった.

得られた結晶の代表的な写真を図5に示す.結 晶は真黒で金属光沢を有しており、(11豆1)面に ファセットが現われ易いので、育成方位とファセ ット面が合わないとななめに育成が進み、結晶が 曲ってしまうことがある.得られた結晶は、しば しば双晶を含んでおり、X線解析の結果、双晶面 は((10ī1)面であることが判った.

現在,得られた結晶について,構造解析,弾性

率, 放射線損傷, 等について測定が進行中である.

4.2 ZrO₂-Sc₂O₃系の相平衡と単結晶

育成

4.2.1 緒 言

ZrO₂-Sc₂O₃ 系の化合物については, 電気伝導 度,酸素のオーダリング等に関する興味が持たれ ており,相平衡およびフラックス法による単結晶 育成が試みられている.

 $ZrO_2-Sc_2O_3 2$ 成分系の相図については、これまでにいくつかの報告がある.このうち、Thornber 等 40 の報告しているものを図6に、Ruh 等 50 および Spiridonov 等 60 の報告している相図を図7に

図5 FZ 法により育成された B₄C 単結晶

-47 -

図 6 Thornber 等による ZrO₂-Sc₂O₃系の相図

示す. これらの図からも判るように, これまでの 報告には, 相違点, 不明点がいくつかあり, か つ, これらの系の相平衡研究には, 超高温領域で の溶融実験が必要であることから, 浮遊帯域徐冷 法の適用を試みた.

一方,この系の化合物単結晶の育成例として Sc₄Zr₃O₁₂の浮遊帯域法による単結晶育成につい

て検討した.

4.2.2 Zr₂O₃-Sc₂O₃ 系の SCFZ 法による相平 衡研究

(i) 実 験

出発試料として、Sc₂O₃ (三津和化学㈱製, 純 度99.9%), ZrO₂ (高純度化学㈱製, 99.9%)の各 粉末を使用し、これらを任意の割合に秤量後, 湿 式混合し、1000 kg/cm² の圧力でラバープレス法 にて成型した.成型棒は、酸素雰囲気中、1800℃

図 8 出発組成 ZrO₂: Sc₂O₃=70:30 (wt%) について, SCFZ 実験後の固化棒の断面図

で1時間, 焼結し, 実験に供した. 焼結棒の直径 は5mm, 長さは50~80mm 程度とした.

融解実験には4.1と同様, 6.5 kW キセノンラ ンプを使用する赤外線集中炉を使用した.融解 後,浮遊帯域徐冷法によって得られた固化棒は, 切断,研磨し,偏光顕微鏡,位相差顕微鏡, EPMA 等により,組織,組成について検討した.

(ii) 結 果

出発組成として、 $ZrO_2: Sc_2O_3=90: 10, 70:$ 30, 25:75 (wt%)の3つの組成について浮遊帯 域徐冷法を試みたが、これらのいずれの場合に も、固液界面の移動速度を十分に遅くすることが できず、満足な結果が得られなかった.

図8に出発組成; $ZrO_2: Sc_2O_3=70:30(wt\%)$ の場合の固化棒の長さ方向の断面図を示す.この 図からも判るように、固液界面の形状が一定せ ず、第2章で述べた、理想的な浮遊帯域涂冷法の 固化法則から大きくずれていることが判る.この 試料の場合は、平均的な固液界面の移動速度は8 mm/hr 程度であったが、この値は、明らかに大 きすぎ、より遅い移動速度での実験が必要であ る.しかしながら、これより遅い移動速度では、 融帯がタレて切れてしまい実験を継続することが できなかった.

4.2.3 ZrO₂-Sc₂O₃ 系化合物単結晶の育成

(i) 実験

 ZrO_2 - Sc_2O_3 系において存在が知られている3 つの化合物, $Sc_2Zr_7O_{17}$, $Sc_2Zr_5O_{13}$, $Sc_4Zr_3O_{12}$ に ついて, それぞれの組成になるよう, 原料粉末を 調整し, ラバープレス法で成型後, 相平衡研究の 場合と同様にして, 径 6 mm, 長さ80mm 程度の 焼結棒を作製し, 浮遊帯域法による単結晶育成を 試みた.

(ii) 結 果

上述のいずれの組成比の場合にも,前節で述べた相平衡研究の場合と同様に,形成された融帯を 安定に保持することが困難であり,満足な結果が 得られなかった.

図9に、各組成比の出発原料を用いて、浮遊帯 域法によって得られた結晶の断面の偏光顕微鏡写 真を示す.いずれも断面積が1mm²以下のグレ インの集合体で、各グレイン中にも、図に見られ るように、セル成長に起因すると思われる異相が 存在している.また、EPMAを用いた組成分析

(A);出発組成:Sc₂Zr₇O₁₇

(B); $Sc_2Zr_5O_{13}$

(C); Sc₄Zr₃O₁₂
 図 9 FZ 法により育成した結晶の偏光顕微鏡写真

の結果,各グレインの周辺部と中心部とでは1~2%程度の相達が認められた.

4.2.4 ZrO₂-Sc₂O₃ 系融体の不安定性

4.2.2, 4.2.3の前2節で述べたように, ZrO₂~ Sc₂O₃ 系の任意の組成の融体を浮遊帯域法によっ て保持しようとする時,時間の経過と共に, 固液 界面の形状変化, 融液量の変化が生じ, また融帯 はタレて、長時間の保持が極めて因難であった.

浮遊帯域法を用いる相平衡もしくは単結晶育成 研究においては、形成された融帯が長時間、安定 にそれ自身の表面張力によって保持されることが 前提条件である.この前提条件を満足することに よって、相平衡図と固化試料との対応も可能とな る.

浮遊帯域法による融帯の保持が困難となる理由 の第一は、融体の表面張方が弱い場合である.

Heywang⁷⁾ は, 密度 ρ , 表面張力 γ の融帯がその表面張力で保持される最大長さ l_{max} は, 大略次式で与えられることを示した.

$$l_{\max} \cong 2.8 \sqrt{\frac{\gamma}{\rho \cdot g}}$$

但し,gは重力加速度である.

実際の系においては、固液界面の形状、回転 数、気泡の混入、等によって、多様に変化するか ら一律に論ずることはできないし、表面張力が正 確に測定されている系はほとんどないから、実際 には、実験的に確認することになる.

理由の第二は,重力効果に起因する融液内での 組成変動であろう. Bi_2O_3 -SiO₂系,等いくつか の系では,融液が均一とならず,不混和現象(Li quid Immiscibility)が生ずることが知られてい るが,この現象の確認例は,強く生ずる系に限ら れており,余り多くは見出されていない.しかし ながら,弱い不混和現象はより広範囲の多元系融 液中に生じている可能性が強く,本章で述べた ZrO_2 - Sc_2O_3 系の場合にも,時間の経過と共に融 帯がタレやすくなることの理由は、この不混和現 象によるものである可能性もあるが、この系の場 合には、むしろ前者の表面張力不足による可能性 が強い.

いずれにしても、融帯が長時間,安定に保持で きない系に対しては、現存の浮遊帯域法をそのま までは適用できないが、2000℃を超える超高温領 域での溶融実験にとって、浮遊帯域法の利点は他 に替え難いものがある.そこで、このような、融 液の表面張力の不足している系、不混和現象を呈 する系、等にも適用可能な方法として、音波浮遊 式横型浮遊帯域溶融装置を用いる方法も考えられ るが、これの詳細については、第6章で述べる.

参考文献

- G. V. Samsonov, et. al Fiz. Met. Metallograd. Akad. Nauk 3 309 (1956).
- R. P. Elliott, H. T. Research Institute Rep. ARF 2200-12 (1961).
- M. R. Thornber et. al, Acta Cryst., B 24, 1183 (1968).
- M. R. Thornber et. al. J. Solid State Chem., 1, 545 (1970).
- R. Ruh et. al., J. Am. Ceram. Soc., 60, 399 (1977).
- F. M. Spiridonov et. al., J. Solid State chem., 2, 430 (1970).
- W. Heywang, Z. Naturforsch., 11 a, 238 (1956).

5. 多成分系の相平衡研究と単結晶育成

5.1 緒 言

君塚等¹⁾は、1975年、一般式 $R_nFe_{n+1}O_{3n+1}$ または $nRFeO_3 \cdot FeO(R:Y, Ho, Er, Tm, Yb, Lu)$ で表わされる一連の層状化合物を発見した. これらのうち、一部は、構造解析が行なわれ²⁰、また YFe_2O_4 に関しては、単結晶を用いた電気的、磁気的性質に関する研究が進行中であり、Parasitic ferrimagnetism の発見等、興味ある特性が明らかにされつつある³⁻⁴⁾.

さらに君塚等は, 最近, 一般式 nRFeⅢO₃•FeⅡO の構成元素のうち, FeⅢを Ga, Al で, FeⅡを Mg, Co, Ni, Mn, Zn 等の2価イオンで置換できることを見出し⁵⁾, ここに膨大な数の新しい 層状化合物が出現した. これらの化合物は, その 構成元素の組み合せによって種々な特性を帯びる ことが予想され, 新しいレーザーホスト, 螢光材 料等として有望と思われるものもいくつかある.

一方,科学の進歩に伴って,材料に対する要求 は、ますます高度化、多様化しており、それらの 多様なニーズに応えるために、より多元系の材料 に関する研究の重要性が高まっている.しかしな がら、容易に想像できるように、多元系の材料に 関しては、相平衡研究を行なう場合にも、単結晶 の育成を行なう場合においても、2元系の場合に 比して格段に困難さが増し、膨大な回数の実験と 多大の労力、時間を必要とする.

本章においては、3元系の相平衡研究を行なう 際に浮遊帯域徐冷法を伴用することで、研究時間 の大幅な短縮と、結果の正確さがもたらされる見 通しがついたこと、および YbFe₂O₄、YbMgFeO₄ の浮遊帯域溶媒移動法による単結晶育成に成功し たことを述べ、3元系以上の多元系の相平衡、お よび単結晶育成研究における浮遊帯域法の効果的 な適用について述べる.

5.2 MgO-Yb₂O₃-Fe₂O₃3元系の相平衡

(i) 実 験

出発原料として Yb2O3 (信越化学㈱製, 純度

99.9%), Fe₂O₃ (アルファ・プロダクツ社製, 純 度99.99%), MgO (マリンクロット社製, 純度 99.9%)の各粉末試薬を使用した.SCFZ 実験用 試料棒の作製には,全体が15gになるように,任 意の割合で各成分を秤量,湿式混合後,1000 kg/ cm²の圧力でラバープレスし,1570℃,酸素雰囲 気中で1時間,焼結して試料棒とした.また急冷 法を用いてサブソリダス領域での相関係を調べた が,この場合の試料は,全体が4g程度になるよ うに,各成分を秤量し,湿式混合後,同様にラバ ープレス法によって丸棒状に成型したものを使用 した.

SCFZ 実験には、ハロゲン式双楕円型赤外線集 中炉を使用した. 試料棒を赤外炉にセットし. 先 端部を融解,接合後,固液界面の移動速度が 0.2 mm/hr の速度になるよう、ランプ印加電圧の下 降速度,試料棒の切り離し速度を調節した. 約6 時間程度で,融体の固化が完了した、

急冷法の場合には、モリブデン抵抗炉を使用 し、温度1470°±3℃に設定した試料室中に、試料 片を白金線で吊して入れ、酸素雰囲気中で2~5 時間保持し、室温まで急冷した.得られた急冷試 料片は、粉砕後、粉末X線回折計により同定を行

— 51 —

無機材質研究所研究報告書 第29号

配	合組成m	ol%	反应時間	At- A thin	
MgO	Yb_2O_3	$\mathrm{Fe_2O_3}$	风心时间		
15.0	60.0	25.0	48.0	O + M + Y	
30.0	65.0	15.0	41.0	M+Y	
50.0	40.0	10.0	48.0	M + Y + P	
80.0	15.0	5.0	40.0	M + Y + P	
80.0	10.0	10.0	58.0	M + P	
80.0	5.0	15.0	64.0	M + P + S	
65.0	10.0	25.0	60.0	M + P + S	
50.0	15.0	35.0	41.0	M+S	
20.0	35.0	45.0	48.0	M + S + O	
25.0	25.0	50.0	25.0	S + O	
22.0	25.0	53.0	14.0	S + O	
36.0	7.0	57.0	52.0	S + O + G	
21.0	21.0	58.0	64.0	S + O + G	
20.0	20.0	60.0	64.0	S + O + G	
10.0	20.0	70.0	48.0	S + G	
20.0	40.0	40.0	48.0	M + O	

表1 配合組成と安定相(1470℃ in O₂)

表中のO, M, Y, P, S, Gはそれぞれ YbFeO₃, YbMgFe₄, Yb₂O₃, MgO, (Mg, Fe) Fe₂O₄, Yb₃Fe₅O₁₂ である.

った.

(ii) 結果と考察

1470℃,酸系雰囲気中における $MgO-Yb_2O_3$ -Fe₂O₃ 系の生成相についての急冷法による実験結 果を表に示す.この表1の結果を図示したものが 図1である.図1において、YbFeO₃および Yb₃Fe₅O₁₂と共存する (Mg, Fe) Fe₂O₄ 相の Mg, Fe の組成比については、推定値であり、 EPMA、その他の方法でより正確な値を求めるこ とが必要である.

図2に、出発組成; MgO:Yb₂O₃:Fe₂O₃=38 :31:31(モル比)の原料棒について、SCFZ 法 により得られた固化棒の長さ方向に2分した切断 面の位相差顕微鏡写真を示す.図3において、顕 微鏡写真として、この固化棒は、5つの領域から 成っていることが判る.

第1領域は, 焼結棒の未溶解部分, 第2領域

は、初晶が析出している領域、第3は、初晶の析 出がなくなり、マトリックスのみとなった領域、 第4は、次の単相領域、第5は、再び2相共存相 となった領域である。

図3は、図2を長さ方向に EPMA を用いて線 分析を行なった結果を示す.但し、この図は、定 量補正をしていない. EPMA による分析結果か ら、初晶は (Mg, Fe)O、マトリックスは Yb-MgFeO4 であることが判る.そして、光学顕微 鏡では単相としか見えなかった領域に、Yb_{2+*}Fe₂ MgO_{7+3*/2}、次いで Yb₃Fe₃MgO₁₀ が次々と析出 していることが判った.そして、光学顕微鏡では 相の違いとして表われていた.第3領域と第4領 域の差が、EPMA による組成分析の結果では全 く認められず、この境界は、組成的なものでな く、構造的、もしくは、組織の違いによるものと 思われる.次いで、YbFeO₃ と Yb₃Fe₃MgO₁₀ の

 図 2 出発組成; MgO: Yb₂O₃: Fe₂O₃=38:31:31(モル比) について SCFZ 法により得られた固化棒の断面(反射位相差顕微鏡)

図3 図2に示す固化棒の EPMA を用いた組成分析結果

混合相,そして最後は YbFeO₃ と (Mg, Fe)Fe₂O₄ の混合相となっていた. したがって, MgO: Yb₂ O₃: Fe₂O₃=38:31:31 (モル)の出発組成で SC FZ 実険を行った結果, MgO-Yb₂O₃-Fe₂O₃系に (Mg, Fe)O, YbFeMgO₄, Yb_{2+x}Fe₂MgO_{7+3x/2}, Yb₃Fe₃MgO₁₀, YbFeO₃, (Mg, Fe)Fe₂O₄ の6種 類の化合物が存在することが判明した.

上述の結果は、定量補正を行なうことで、より 正確なものとなろうが、このような複雑な化合物 を含む3元系の相平衡研究にとって、SCFZ 法が きわめて短時間に多くの情報をもたらすことが実 証されたといえよう.

5.3 YbFe₂O₄ 単結晶の育成

著者等⁶は,既に浮遊帯域法による YFe₂O₄ 単 結晶の育成について述べているが、今回は、Yb-Fe₂O₄ 単結晶の育成を試みた、YbFe₂O₄、YFe₂O₄ および後述する Yb₂Fe₂MgO₇ 等は,いずれも 層状化合物であり, 強い劈開性を示すと同時に容 易成長軸には、強い方位依存性がある.しかも、 これらの結晶は、高温でのみ安定で、1000℃以下 で長時間, 焼鈍すると YbFe₂O₄→YbFeO₃+FeO なる反応が生じ、分解してしまう"). 更には、こ の物質は鉄原子に関し、2価イオンと3価イオン を等量含んでおり、微妙に、かつ正確にコントロ ールされた雰囲気下で全ての実験が実行されねば ならない、このような、いくつかの実験的な制約 下で, 良質かつ大型の物性測定に耐え得る単結晶 を育成するためには、極めて高度の実験技術と、 育成システムの安定性が要求され,事実上,浮遊 帯域法以外には、実現不可能と思われる.

(!) 実 験

出発原料として、5.2節で述べた相平衡研究に 使用したものと同じ Yb_2O_3 および Fe_2O_3 粉末 を使用した. 両者をモル比で1:1に秤量し、ア ルコールを用いて湿式混合後, 雰囲気ガスとして $CO_2/H_2=1[cc/cc]$ の混合ガスを 4 cc/min の流 量で流した シリコニット 炉中 で, 1100℃, 12時 間, 仮焼した. 仮焼物は, 粉砕後, ラバープレス 法で, 1000 kg/cm² の加圧下で丸棒状に成型し, 上記混合ガス中で1250℃, 1時間, 焼結して原料 棒とした.

最適育成雰囲気範囲を決めるため、 CO_2 対 H_2 ガスの混合比を 1.0 から 5.0 まで変化 さ せ な が ら,通常の浮遊帯域法による単結晶育成を試み, EPMA,光学顕微鏡を 用 いて キャラクタリゼー ションを行った,結晶育成には,ハロゲン式赤外 線集中炉を使用し,育成速度は,全て 1 mm/hr とした.

(ii) 結果と考察

表2に、育成時の雰囲気と析出相の関係を示

表2 YFe₂O₄ 組成の原料析を使用し, 浮遊帯域法 によって 40mm 程度育成後の析出相と育成 雰囲気との関係

$\rm CO_2/H_2$	析 出 相
1.0	Fe, Yb ₂ O ₃
3.0	FeO, Yb ₂ O ₃ , YbFe ₂ O ₄
4.0	FeO, Yb ₂ O ₃ , YbFe ₂ O ₄
4.5	FeO, Yb ₂ O ₃ , YbFe ₂ O ₄
4.8	$YbFe_2O_4$
5.0	YbFe₂O₄, YbFeO₃

す. 但し, 析出相は, 育成初期と 20~40 mm程 度育成後とでは変化することがあるので, 40 mm 程度育成後の結果を示してある.

 $CO_2: H_2=4.5$ より H_2 ガス過剰側では,目的 とする相 YbFe₂O₄ の他に, Yb₂O₃ と FeO が異 相として共存してくる.この時, Yb₂O₃ は丸棒状 の析出棒の外周部に,FeO は中心部に析出する のが特徴的であった.

無機材質研究所研究報告書 第29号

図4 育成雰囲気として CO₂/H₂=4.5 の 混合ガスを使用した時の育成結晶の 中心部にみられる2相共存状態

図4に、中心部にみられる異相の代表的な析出 状態を示す.

図5は、この部分の異相部の FeK_{α}線によるX 線像であり、FeO の析出を示している.

 $CO_2/H_2=4.8$ の場合には、育成結晶長 40 mm 程度の部分は、目的とする $YbFe_2O_4$ の単相であ ったが、この場合にも、初めの育成部分には Yb_2O_3 相の析出がみられた、

このことは、 $YbFe_2O_4$ は分解融解化合物であ り、その初晶は Yb_2O_3 であることを示している. したがって、単結晶育成には、常に $YbFe_2O_4$ と 共存する液相からの結晶の析出を継続させる、即 ち、浮遊帯域溶媒移動法によらねばならない.

一方,前述したように,YbF₂O₄ は強い異方性 を有しており,容易成長軸は,C面内にある.そ して,一度,C面が育成方向と一致してしまう と,これ以上の変化は起らないから,育成を続け てもグレインの数が減らない.種子として焼結棒 を使用し,結晶育成を行なうと,40~50mm経過 後,グレインの数は15~20で定常となってしまう から,この時点で,一度育成を中止し,育成結晶を 傾けてセットしなおし,再び育成を行なう.この ようにすると,育成方向とC面が一致しないグレ インは,育成が進むにつれて次第に消滅する.こ のような操作を5回繰返して,グレインの数を減 らし,単結晶としたものの写真を図6に示す.

図5 図4にみられる2相共存領域のX線 像 (FeKa)

5.4 YbFeMgO₄ 単結晶の育成

5.2節で述べた相平衡研究の結果から、YbFe-MgO₄も、他の一連の $n(RFeO_3)$ ・FeO と同様、 分解融解化合物であるが、この場合には、Fe²⁺イ オンの代りに Mgを含んでいるから、雰囲気とし ては酸素を用いればよく、実験はやりやすい.

出発物質として、 Yb_2O_3 , Fe_2O_3 , MgOの各粉末 を用いた. これらは、いずれも5.2節で述べたも のと同じ原料粉末である. これらを YbFeMgO₄ の組成比に秤量し、湿式混合後、ラバープレス法 で成型して、1300℃、酸素雰囲気中で焼結して原 料棒とした.

ハロゲン式赤外線集中炉を使用し,酸素雰囲気下,育成速度1mm/hr で育成を行なった. 育成 結晶は,単相ではなく,周辺部に (Mg,Fe)Oの 析出がみられた.

これは、酸素雰囲気中であるにもかかわらず、 高温で

 $Fe_2 IIO_3 \longrightarrow 2Fe IIO + 1/2O_2$

なる反応で生じた2価の鉄イオンによって, Mg のしめるべきサイトの一部が置換され, MgO が 析出したものと考えられる.したがって育成され た結晶の組成は,

YbFeMg_{1-x}Fe_xO₄

と現わされる. x=0, 即ち, YbFeMgO₄ の理想

超高温耐熱セラミックスの研究開発

図6 FZ 法により育成した YbFe₂O₄ 単結晶

図7 FZ 法により育成した YbMg0.9FeII0.1FeIIO4 単結晶

的な組成の単結晶育成には、高い酸素圧下での浮 遊帯域法の適用が必要と思われる.

酸素1気圧下で, 異相を含まない単結晶を育成 するためにxの値を変化させて実験を行なった結 果, x=0.1の時, 異相を全く含まない, 良質な 単結晶が得られた.

図7に、得られた単結晶の写真を示す.

YbFe₂O₄ においては,等量含まれている Fe³⁺ イオンと Fe²⁺ イオンは,全く等価の位置にあ り,区別がない.しかるに,YbFeMgO₄ におい ては,Fe³⁺ イオンと Mg イオンとは,別々のサ イトに位置すると思われるから,YbFe₂O₄,もし くは YFe₂O₄ との相異について物性的にも興味が 持たれており,種々,実験が継続中である.

参考文献

- N. Kimizuka and T. Katsura, J. Solid State Chem., 13, 176 (1975).
- K. Kato, I. Kawada, N. Kimizuka and T. Katsura, Z. Krist., 141, 314 (1975).
- T. Sugihara, K. Siratori, I. Shindo and T. Katsura, J. Phy. Soc. Japan, 45, 1191 (1978).
- J. Akimitsu, Y. Inada, K. Siratori, I. Shindo and N. Kimizuka, Solid State Com., 32, 1065 (1979).
- 5) N. Kimizuka and E. Takayama, J. Solid State Chem., in press.
- I. Shindo, N. Kimizuka. and S. Kimura, Mat. Res. Bull. 11, 637, (1976).

6. 今後の問題点

6.1 緒 言

超高温物質系の相平衡,単結晶育成研究に浮遊 帯域法を適用することの利点については,前章ま でに述べたが,この方法の有する不利な点もあ り,これらについても考慮すると共に,不利な点 をおぎなう努力も同時に進めなければならない.

浮遊帯域法に混乱をもたらす二大要因として は,温度差帯域溶融機構および溶液内に作用する 重力効果によってもたらされる比重差に起因する 物質移動がある.

また、本報告書においては、ハロゲンランプを 用いた高温高圧型浮遊帯域溶融炉の開発について 述べているが、この装置の適用温度範囲は 200 気 圧の高圧ガス圧下でせいぜい2000℃止まりと予想 されるから、より高温化、高圧化することが必要 とされよう.

一方,本特別研究で開発した高温高圧型浮遊帯 域溶融炉は,高ガス圧下で試料の溶融を行なうこ とによって,試料からの蒸発を抑えようとしてい るが,そもそも,浮遊帯域法とは,急激な温度勾 配の存在を前提としており,このような温度勾配 の存在は,試料からの蒸発を抑えるという観点か らいえば,溶融実験に負の影響を与える.

したがって,現在,GaP,GaAs等の蒸発しや すい化合物単結晶育成に用いられているような LEC法(Liquid En-Capsulant Method) を浮 遊帯域法に適用して,試料からの蒸発を抑える手 段についても検討することになろう.

また,一般に,材料に関する研究法には,万能 の方法はなく,単結晶育成法においても,数多く の方法には,それぞれ,利点,欠点がある.本特 別研究においては,超高温領域で使用可能な適当 なルツボ材がないことなどから,浮遊帯域法の利 用を中心に研究を進めて行くが,浮遊帯域法は, 大口径の単結晶育成法としては不利な点がある. そこで,浮遊帯域溶媒移動法によって得られた知 見を基に,溶媒移動法を他の,より大口径大型単 結晶育成にとって有利な方法,例えば,引上げ 法, ブリッジマン法等に適用する方策を探求して 行くことも,本特別研究の主要な研究課題となる であろう.

6.2 温度差帯域溶融機構

温度差帯域溶融機構(Temperature Gradient Zone Melting, TGZM と略語)は、温度勾配の 存在下で、溶質として扱える成分が低温側から高 温側へ、溶解、析出を繰返しながら移動するもの であり、一般には余りなじみがないが、混合試料 の融解、焼結等を行なう際には、多くの場合にこ のTGZM 機構によって成分移動が発生している 可能性があり、注意を要する.帯域溶融法を用い た相平衡、もしくは単結晶育成研究を行なう際に も、しばしばこの機構による成分変動が生じ、系 の定常的な物質移動が行なわれず、実験結果に悪 影響を与えることがある.

図1に、TGZM 機構の概念図を示す¹⁾. ここで 二成分系 A-B の相図は図1のようになってい るとする. 組成Aの2つの棒を用意し, この間 に組成Bの薄い膜を置き、系全体の温度を図のよ うに保つ. この時, 最高温度 T_h は組成Aの融点 より低くしておく、若干の時間が経過すればBと A とは反応して 拡がった 融帯を形成する. (A+ B)→ C_1 となったところで、液相線(温度 T_1)と 一致するから, 融帯の下側では, 反応 は 止 ま る が,この時,融帯の上側では,温度がこれより高 いT2であるから、この時の液相線組成C2になる まで固相Aの溶解が生ずる.したがって,融帯中 に成分Aの濃度勾配が生じ,拡散によって,Aは 下側に移動する。下側の固液界面では、温度 T. における液相線の組成 C₁ よりAの組成が次第に 高くなるから, KC₁ なる組成の固相を析出する, 次いで再び融帯の上側では拡散によって失なわれ たA成分の不足を補うために固相の溶解が進む. このようにして、時間の経過と共に、融帯は、次 第にその幅を減少させながらも, 高温側に移動し て行く. 結果的には、 B成分が固相A内を移動す ると考えてもよい.

図1 TGZM機構の概念図

TGZM 機構を形成する融帯の幅は極めて薄く てよく,かつ,形状としては板状ばかりでなく, 線状,液滴状であっても差しつかえない.

浮遊帯域溶融法の場合には、融帯部を中心に急 激な温度勾配が形成されているから、上下の試料 棒中に、上述の TGZM 機構を成立させるような 成分が存在すると、その成分は、温度勾配にそっ て、高温側、この場合には融帯に向かって移動す る. SCFZ 法による相平衡研究の場合には、系の 温度は次第に下げられ、固液界面の位置も、液体 側に進むから、比較的悪影響は少ないが、いずれ にしても浮遊帯域溶融法においては、融帯は試料 棒自身によって保持されているから、試料棒の組 成、形状に変動が生ずるのは好ましくない、

実験的に TGZM 機構の発生を抑える手段としては,種々の方法が考えられるが,最も簡便には,出発試料の反応を十分に完結させ,焼結密度を上げて,均質な試料を用いることで相当に改善される.

6.3 比重差に起因する物質移動

6.3.1 緒 言

水溶液法,融剤法,帯域溶媒移動法,等のよう に,溶液からの固相の析出を利用した単結晶育成 法は,これまで最も多用されてきた方法である. 工業的にある程度以上の大きさ,純度,等を要求 される場合を除けば,普偏的な単結晶育成法の基 本と考えて差しつかえなく,これまで,最も多種 類の単結晶育成がこの溶液法によってなされてき ている.

しかしながら,よく知られているように,溶液 法による単結晶育成法は一方において,最も再現 性に劣るとされており,任意の組成の結晶を任意 の形状に,再現性よく育成することは極めて困難 とされている.単結晶育成法の論文通りに実験を 行なっても,必らずしも論文通りの結果が得られ ず,結晶育成には,言葉に表わせない"経験"と "カン"が必要とされ,このことが若手の研究者 にとって,結晶成長を扱い難いものとしている一 因となっている.

このような溶液からの固相の析出現象の再現性 が劣る原因の1つは、溶液内での成分変動に注意 が欠けていたためと思われる.

一般に、溶液内においては、各構成成分の濃度 は均質なものとして扱われている.しかるに、実 際には、多くの系で重い成分は下方に、軽い成分 は上方にと偏在することが多く、この偏在の程度 に応じて種々な現象が生ずる.後述するように、 融剤法による単結晶育成の際には、特にこの組成 の偏在に対する注意が必要で、これによって、従 来、説明のつかなかった現象が理解できるように なったり、また、結晶育成の再現性が格段と向上 した例があり、最近の融剤法による単結晶育成研 究においては溶液内での成分偏在、もしくは、重 力加速度の影響を考慮した研究が多くなりつつあ る. 一方,本特別研究がめざしている超高温耐熱物 質系においては,浮遊帯域法の適用が不可欠の研 究手段であるが,この浮遊帯域法においては,他 の方法にも増して,溶液構成成分の偏在の影響が 顕著に現われる傾向がある.したがって,これら 成分偏在の成因,相平衡図との相関,等につい て,十分な検討を進めておく必要がある.このこ とは,宇宙空間における微少重力下での材料実験 との対比を行なう上においても極めて重要なこと であり,1985年に予定されている宇宙開発事業団 によるスペースシャトルを利用した宇宙実験に向 けて早急に地上での実験,解析を急ぐことが望ま れる.

更には、地球内部における マグマの成因,移動、凝固を考える際、このような重力効果を考慮する必要性は多分にありそうである。McBirnyは²⁰、マグマの撹拌効果について論じているが、これらの考え方に重力効果の影響を加味して考察すれば、より正確な知見が得られるものと期待される.

本章においては,主として比重差によって溶液 内に生じた成分偏在を利用した物質移動を単結晶 育成の立場から考察するが,これは,このような 重力効果を利用した単結晶育成法が,一般的な良 質大型単結晶育成法となりうると考えているわけ ではなく,むしろ,溶液からの固相の析出を扱う 他の通常の溶液法による単結晶育成,もしくは, 液相を含む領域での相平衡研究にとって,より正 しい知見を得,実験の正確さ,再現性向上に役立 つと考えられるからである.

6.3.2 比重差による成分偏在

地上における種々な現象は常に重力加速度の影響を受けているが、通常の溶液反応においては、 この効果はそれ程大きくはなく、無視できる程度 のものとされている.

しかるに,溶液内において,構成イオン,もし くは,構成分子がある程度の大きさの分子団(ク ラスター)を形成し,これが重力加速度を受けて 浮力が働くと,溶液内での物質移動が発生し,こ れに伴う溶解,固相の析出反応,等が生じ得る. 図2に,液相内における溶質の偏在をモデル的に 示す.

図3に、概念的な二成分系 A-B において、液 相内で重力効果による組成の不均一性が生じた場 合の相図との対応関係を示してある、図3におい て温度 T_i ,平均組成 C_i ,の液相が、重力効果に よって組成に不均一性を生じ、成分Aの富んだ部 分が形成されると、この部分は、液相線を横切 り、固相Aの析出が起こることを示している.

出発組成が C_2 の場合には,温度 T_2 では全部溶けるが,重力効果によって溶質濃度に偏在が生ずると,成分Aに富んだ部分からは固相Aの析出が

図2 液相内において形成されたクラスターが重力効果による浮力を受けて 偏在した時の概念図

図3 液相内に成分変動が生じた時の固相の析出機 構,点線は準安定な Ostwald-Miers 領域を 示し,1は比重差輸送法および比重差帯域溶 融法,2は比重差不均化法を示す

生じ,成分Bに富んだ部分からは固相Bの析出反応が生ずることになる.

したがって、上述の重力効果を利用すれば、等 温帯において液相からの固相析出反応を起こすこ とができ、これによる単結晶育成が可能となる.

重力効果による単結晶育成法としては、概念的 に次の3つの方法が考えられる^{3~4)}.

(1) 比重差輸送法

(Gravitational Transport Method)

(2) 比重差带域溶融法

(Gravitatinal Gradiend Zone Melting Method)

(3) 比重差不均化法

(Gravitational Disproportionation Method)

実際の溶液中において、上述のよう な 分 子 団 (クラスター)の存在を確認する直接的な手法は 今のところありそうにない.しかしながら、溶液 中に分子団が形成されうるという考え方は、他方 において、溶液からの結晶成長における"ブロッ クニュークライ"の存在説とも関連しており、詳 細な検討が待たれている課題である.

以下に、比重差を用いた3つの単結晶育成法の 概念について述べる.そして、融剤法による単結 晶育成の際に重力効果を考慮することの必要性に ついて、PbO-PbF₂-B₂O₃ 系フラックスからのイ ットリウムアルミニウムガーネット(Y₃Al₅O₁₂) 単結晶の育成および Li₂MoO₄-MoO₃ 系フラック スからの酸化ベリリウム(BeO)単結晶育成を例 にして述べる.また、浮遊帯域法に現われる比重 差不均化法の例としてサマルスカイト関連化合物 の融解、凝固について述べる.

(A) 比重差輸送法 (Gravitational Transport Method)

図4 比重差輸送法の概念図. この場合は,溶質が溶媒よりも重く,時 間の経過につれて上側では溶解,下側では析出反応が生ずること を示している

無機材質研究所研究報告書 第29号

図5 比重差帯域溶融法の概念図.これは、溶媒が溶質よりも重い場合 の図である

図4に、比重差輸送法の概念図を示す.図4に おいて容器は等温帯に設置され、系からの蒸発等 による溶媒量の変動はないものとする.(A)は、等 温帯において、溶質が均質に分散している状態を 示すが、(B)は、溶質が溶媒より重く、重力効果に よって下方に偏在し、そのために、上側では、溶 質原料の溶解反応が生じ、下側では、溶解度を超 えた溶質が固相として析出する様子を示してい る.

この場合,重力効果による成分偏在は,拡散反応と逆向きにならざるを得ないし,溶解,固相の 析出に伴う反応熱の収支,粘性,系全体の温度変動の効果,等について考慮する必要のあることは 無論である.

(B) 比重差帯域溶融法(Gravitational Gradient Zone Melting Method)

図5に、比重差帯域溶融法の概念図を示してある. 図3からも理解されるように、この方法の原理は、(A)の比重差輸送法と同一である. 図5(A)において、等温帯に置かれた円筒状試料(組成 C_1)の上部にこれよりも比重が大きく、かつ融点の低い成分(組成 C_2)を載せ、温度を組成 C_2 の融点よりも高い温度 T_1 に保持する. こうすると、液相内において重力効果に起因する成分偏在がなけ

れば,温度 T_1 における液相線組成 C_1 の液と組 成の試料とは境界を接したまま,溶解も析出も生 じないが,この時,重力効果によって溶質の偏在 が生じ,例えば,溶質が上方に移動すると,下方 では,不足分だけ溶解が進み,上方では,液相線 組成を超えた分の析出反応が生ずる.この反応 は, 6.1節で述べた温度差帯域溶融機構と同じ反 応であり,試料 C_1 がなくなるまで続く.図5(B) は,反応途中の様子を表わしたものである.

(C) 比重差不均化法 (Gravitational Disproportionation Method)

この方法は、図3の"2"に対応するもので、 概念図を図6に示す.図6(A)は、等温帯に置かれ た試料溶液中に何ら成分偏在がない場合、図6(B) は、重力効果によって、成分偏在が生じ.容器の 上側、下側で、それぞれ液相線組成を超え、固相 の析出が生じた様子を示してある.この図では、 容器の上、下両方で固相の析出が生じた場合を示 してあるが、必らずしもこの通りにならなくても よく、固相の析出は、容器の上側のみ、もしくは 逆に下側のみという場合も生じ得る.この反応は 上述の比重差移動法または比重差帯域溶融法と異 なり、成分偏在が定常状態になったところで反応 は終結する.しかしながら、この場合の極端な例

超高温耐熱セラミックスの研究開発

図6 比重差不均化法の概念図

としては、十分に撹拌されていて、成分偏在のない状態では融解していた液が、撹拌が止まり、比 重差により成分偏在が生ずるにつれて固相の析出 が始まり、ついには全ての液相が消失することも 起こり得る.後述するサマルスカイト関連化合物 の凝固反応はこのケースと考えられる.

6.4 融剤法による単結晶育成時に見ら れる重力効果

6.4.1 実 験

(i) 徐冷法による YAG(Y₃Al₅O₁₂) 単結晶の育成⁵⁾

出発原料として $Y_2O_3: 35.8g$, $Al_2O_3: 33.3g$, PbO: 186.9g, PbF₂: 229.4g, $B_2O_3: 14.6g$ 計 500gを使用した. 径 40 mm, 高さ70 mm, の白金ルツボに全ての原料を溶かし込み, ふたを して, 1250℃に24時間, 保持後, ルツボ上下に, 下部を上部より低く, 6℃, 30℃, 60℃の各温度 差をつけながら, 1.2℃/hr の 徐冷速度で 徐冷し ながら, 850℃ まで徐冷し, 後, 室温まで放冷し て, ルツボ内の結晶生成状況を観察した.

(ii) 温度差法による BeO⁶ および YAG 単結晶 の育成

径 35 mm, 高さ 100 mm の白金ルツボを使用 し, BeO 単結晶育成の場合には, Li₂MoO₄-MoO₃ (1:1モル比)融剤を溶かして満たし, ルツボ 上部に設けた"カゴ"の中に焼結した BeO 原料 を入れ, ルツボ上部を1110℃, ルツボ下部を1100 ℃に保持して, 1週間後に融剤を流し出し,実験 を終了した. YAG 単結晶育成の場合には, BeO の場合と同じ白金ルツボを用い, 徐冷法の場合と 同じ融剤を満たし, 同様にルツボ上部に設けたカ ゴ中に焼結した YAG 原料を入れ, ルツボ上部を 1100℃, 下部を1000℃に保持して, 30日間, 経過 後, 溶融物を流し出して実験を終了した.

6.4.2 結果と考察

図7に温度差を変えた徐冷法による YAG 単結 晶の生成状況変化を示す. $\Delta T=0$ °C,即ち,等温 帯にルツボを置いて徐冷した場合には,全ての析 出物はルツボ上部に固まっており,良質な単結晶 は全く得られなかった. ルツボ上下に温度差をつ け, $\Delta T=30$ °C とすると,結晶は,ルツボの中心 部付近から下部にかけても析出するようになる. 更に温度差を大きくして, $\Delta T=60$ °C とすると, 結晶は中心部から底部にかけて析出するようにな る.

次に、温度差法による実験結果を図8に示す. BeO の場合には、*Δ*T=10℃、1週間で、径1~ 2mm、長さ5~10mm 程度の六角柱状晶が得ら 上述の実験結果は、これらの系からの固相の析 出には、比重差による成分偏在、即ち、重力効果 が作用していることを示している.この効果は、 温度差にして 10℃/cm 程に達するものであるこ とが判った.このような現象は、他にも、融剤法 による単結晶育成には普通に見られるものであ り、この効果を制御することによって、一般に、 再現性に劣るとされている融剤法による単結晶育 成法を再現性ある方法に向上させることができる ものと考えられる.

6.4.4 比重差不均化機構による多成分系混合 融液の凝固

浮遊帯域法に現れる重力効果の例として、サマ ルスカイト関連化合物系の融解実験において観察 された比重差不均化機構による凝固現象について 述べる.

サマルスカイトは、メタミクト鉱物の一つとし て知られている.メタミクト鉱物とは、かつて地 球上に存在したはずであるにもかかわらず、構成 元素の一つである、ウラニウム等から発せられる 放射線のために崩壊し、組成、構造、性質、等全 く不明の"まぼろし"の鉱物群を意味する.メタ ミクト鉱物は、一般に、ウラニウム、ニオビウ

図8 温度による BeO および YAG 単結晶の育成結果

図9 サマルスカイト組成の混合物を融解 させ、比重差不均化法によって固化 させた物の断面図

ム, チタニウム等の元素を含むことから, 次代の 石油代替エネルギーとして注目されている水素エ ネルギーシステムの確立という観点から,太陽光 エネルギーを利用した,水の光化学分解用電極と して利用できる可能性があり,近年,世界各国で 研究が進められているものである.

出発原料として Y_2O_3 , CaO, UO₂, Nb₂O₅, Fe₂O₃, TiO₂ の 6 成分を選び, これらを組成比 (モル比)で 7:25:4:24:15:8 の 各割合に 秤量し, 湿式混 合 した 後, ラバープレス法によ り, 通常の浮遊帯域法の場合と同様にして, 径 8 mm, 長さ 80 mm 程度の丸棒状に成型し, 1322 ℃で焼結して実験に供した.

ハロゲンランプ式単楕円型集光炉に焼結棒を吊 るし、窒素ガス雰囲気中で先端に赤外線を集中し て融解させ、ランプへの印加電力をそのままにし て経過を観察したところ、次第に融液の固化が始 まり、約40分後に全ての融液がなくなった.

固化試料は,長さ方向に2ッ割し,切断面を研 磨して光学顕微鏡, EPMA 等を用いて,組織, 組成,等について調べた結果,図9に示すように 4つの部分から形成された累帯構造が観察され た.このことは,融液内に重力効果が作用し,比 重差不均化反応が生じたことを示している.

浮遊帯域徐冷法は,本特別研究が目指している

超高融点物質系の相平衡研究法にとって、極めて 有力な方法であると期待されるが、何と言って も、この方法は、形成された融帯が、そのまま保 持され、ノーマルフリージング、もしくは一方向 凝固反応によってのみ、固相の析出が生ずること が前提条件である。しかるに、上述したように、 形成された融帯が比重差不均化反応、等によって 凝固してしまうと、正しい知見が得られなくな る.同様な現象は、BaO-MgO-Al₂O₃系、Bi₂O₃-Ti₂O₃系等においても観察されており、浮遊帯域 徐冷法はもとより、浮遊帯域溶媒移動法の適用を 制限している.

溶液内に作用する重力効果をなくするために は、宇宙空間における微少重力下での実験が望ま しく、上述のサマルスカイト系混合物の溶解、析 出実験は、スペースシャトルを利用した宇宙実験 テーマとして取り上げられる可能性があり、宇宙 での実験結果との対比が待たれている.

一方,地上で,重力加速度の効果をできる限り 少なくした状況で,材料実験を行なおうとする努 力が当研究所において続けられており,横型浮遊 帯域溶融装置の開発が急がれている.この横型浮 遊帯域溶融装置とは,赤外線集中炉の利点を活か すべく,通常の回転楕円面鏡を用いた赤外線集中 炉を横型にセットし,形成される融帯の重力によ る落下を防ぐために音波浮遊装置を組み合せたも のであり,まだ基礎データの集積段階であるが, 発展が望まれている.

参考文献

- W. G. Pfann., "Zone Melting 2 nd Ed.", Robert E. Krieger Pub. Co., New York, 1978.
- A. R. McBirney, J. Volca. Geothermal Res., 7. 357 (1980).
- 進藤勇,第25回人工鉱物討論会講演要旨集,p.63 (1980).
- 4) 進藤勇, 坂内英典, 日本結晶成長学会誌, 7, (1980)
- 5) 進藤勇, 小松啓, 窯業協会誌, 85, 380 (1977).
- 長谷川安利,進藤勇,第15回人工鉱物討論会講演 要旨集, p.71 (1970).

7. 研究成果

7.1 研究発表

(投稿)

白鳥紀一, 喜多英治, 梶源太郎, 田崎明, 木村茂 行, 進藤勇, 近桂一郎

"Magnetoelectric Effect of Fe_3O_4 at 77 K.

- I. Crystal Symmetry" J. Phys. Soc. Japan 47, 6 [1779] (1979).
- 喜多英治,白鳥紀一,近桂一郎,木村茂行,進藤 勇

"Magnetoelectric Effect of Fe₃O₄ at 77 K. I. Electric Field Dependence of Magnetic Anisotrtropy" J. Phys. Soc. Japan 47, 6 [1788] (1979).

- 田中翠, 秋光純, 進藤勇, 君塚昇, 白鳥紀一 "Electron Exchange between Fe²⁺ and Fe³⁺ in LnFe₂O₄" Proc. of the 3 rd International Conference on Ferrite (1980).
- 田中順三,進藤勇,月岡正至
- "Electron Spin Resonance of Cu²⁺ and Ni³⁺ in Mg₂TiO₄" J. Phys. Soc. Japan 49, 1 [120] (1980).

進藤勇

"浮遊帯域法による人工猫目石(MgTiO。固溶 体単結晶)の育成"宝石学会誌7,1〔3〕(1980). 進藤勇

"猫目石の人工合成"化学工業 32, 2〔61〕 (1981).

進藤勇

"Determination of the Phase Diagram by the Slow Cooling Float Zone Method : The System MgO-TiO₂" J. Crystal Growth E0, 4 [839] (1980).

進藤勇

"The Growth Mechanism of Negative Crys-

tals and Microscopic Point Imperfections in Flux Grown YAG Single Crystals" J. Crystals" Growth 51, 3 (573) (1980).

木村茂行

"FZ 法における結晶成長界面"鉱物学雑誌 14, 6 〔413〕 (1980).

山名一男, 床次正安, 延谷宏治, 森本信夫, 進藤 勇

"Residual Stress in Siliceous Glass between Mullite Crystals" J. Am. Ceram. Soc. (印刷 中)

7.2 試料提供

提供年月		提供君	名	試料提供先	試料名
55.	5	進藤	勇	九州大学理学部	Li ₂ O 単 結晶
55.	8	進於	勇	青山学院大学	YFe₂O₄ 単結晶
55.	9	進藤	勇	米国, ロスアラモ ス大学	Li ₂ O 単 結晶
56.	6	進藤	勇	大阪大学理学部	YbFe₂O₄ 単結晶

7.3 特許出願

			a contraction of the second
出願年月日	出願番号	発明の名称	発明者
55.11.10	55-157812	単結晶育成装置	進藤 勇
55.11.25	55-165619	浮遊帯域溶融装置(1)	進藤 勇
55.11.25	55-165620	浮遊帯域溶融装置(2)	進藤 勇 広田和士 坂内英典
55.12. 4	55-171245	結晶育成裝置	広田和士 進藤 勇 竹川俊二
55.12. 9	55-173447	結晶育成装置(1)	進藤 勇
55.12. 9	55-173448	結晶育成装置(2)	進藤 勇
55.12.17	55-178616	高圧容器	広田和士 進藤 勇
55.12.19	55-180022	結晶育成装置	進藤 勇

発行日 昭和56年11月18日

無機材質研究所研究報告書第29号

超高温耐熱セラミックスの研究開発

- 編集·発行 科学技術庁 無機材質研究所
 - 〒 305 茨城県新治郡桜村並木1丁目1番
 筑波研究学園都市
 電話 0298-51-3351