Formation of Optical Coupling Structure between Silica Glass Waveguides and Molten Tellurite Glass Droplet S. Todoroki (轟 眞市), A. Nukui & S. Inoue Advanced Material Laboratory Mass Japan $l \sim 0.6 \,\mathrm{mm} \longrightarrow v \sim 0.007 \,\mathrm{mm}^3 = 7 \,\mathrm{n}\ell$

Optical Coupling Structure btw Silica Fibers & Tellurite Glass.

Fabrication method

How did we make it? What is the advantage?

Optical performance

How much is the loss? Is it adequate?

Possible application

What can it be used for?

Stark

Fabrication method Temperature control is critical

Optical performance Measuring internal reflection

9

& tank

- in Loss (11): Disalignment 💳
- in Distance (\Leftrightarrow): Solidification during pulling

11

Fabrication method

Not yet checked by XRD, but...

- ✓ No light reflection from inside
- \checkmark Insertion loss: same as $80 \text{TeO}_2 20 \text{ZnO}$
- Can survive the bending test

 \implies No harmful precipitates for optical applications

Stark

13

Heat history

No waveguide, No use.

Demerit: Lack of waveguide structure

To be improved:

for reducing insertion loss

- Make a waveguide structure afterwards
 - by fs-laser pulse irradiation
- Use TEC fibers

Stark

Planar Lightwave Circuit vs. Electric Circuit

Possible application

Stress tolerance test

Tellurite glass melt

 is inserted into

 Silica glass ferule

 (ID : 126⁺³₋₀ μm) at 800°C

No fracture if $\ell \leq 2mm$

• Can insert melt into sub-mm void

- Existing microsphares are to be improved.
 - Small Q-value due to small refractive index
 - Ununiformity of reheated glass powder
 - Fast deterioration of the dye
- Tellurite glass microcavity?

Optical Coupling Structure btw Silica Fibers & Tellurite Glass.

Fabrication method

Even TeO_2 *melt is quenched* without precipitation.

Optical performance

 \sim **10dB loss** can be improved by **n-modulation**.

Possible application

Hybrid device where soft glass meets a-silica device.