

超高分解能超高圧電子顕微鏡による セラミックスの酸素原子の直接観察

第13研究グループ主任研究官 松井 良夫 第4研究グループ総合研究官 堀内 繁雄

透過型電子顕微鏡の分解能はこの20年間に目覚ま しく発展し、最近では加速電圧が200~400kVの市販 の装置でも1.7オングストローム程度の高い分解能 が得られ、無機材料中の比較的重い金属原子の位置 を、個々の黒点として識別し得るようになってきた (1)。即ち電顕像から材料中の金属元素の配列を直接 解析することが可能になった。この様な高分解能電 顕像による結晶構造解析法は、X線や中性子線回折 法等と相補的な手法として極めて重要な位置を占め るに至っている。我々はこれまでに多くの酸化物高 温超電導体の構造を高分解能電顕法により解析し、 例えばビスマス系超電導体の変調構造の解析などの 成果を挙げてきた(2)。これまでの高分解能電子顕微 鏡ではしかしながら、無機材料の重要な構成要素で ある軽元素(酸素・窒素・炭素等)を個々の黒点と して観察することは不可能であった。その理由は、 ①金属と軽元素あるいは軽元素間の距離が1オング ストローム台と短く、また②軽元素のコントラスト (黒さ) が極めて弱いためである。即ち金属元素に 隣接する軽元素の弱いコントラストを検出するため には、従来にない極めて高い分解能が必要とされる。 我々は酸化物超電導体を想定した高分解能電顕像の コンピューターシミュレーションを行なった結果、 酸素等の軽元素を直接観察するためには、少なくと も1.2オングストローム以上の分解能が必要である との結論を得ていた。

図1 超高分解能超高圧電子顕微鏡 (H-1500) の外 観写真

以上の観点から無機材質研究所においては、1988 年にスタートした超電導マルチコアプロジェクトの 結晶構造解析コアを中心として、分解能1オングス トロームの超高分解能超高圧電子顕微鏡(日立:H -1500型)の建設計画を進め、1990年春完成に至った (3)。図1に本装置の外観写真を示す。本電子顕微鏡 の主な特長は次の通りである。

- ①最高加速電圧が1300kVと極めて高い。また高い電 圧安定度を得るため高圧発生部において2重タン ク方式という新しい手法を採用した。
- ②スーパーコンピューターにより対物レンズの最適 設計を行なった結果、球面収差係数を1.85mmと極 めて低く抑えることに成功した。これにより分解 能1.04オングストロームと世界最高の性能が実現

された。

- ③YAG単結晶蛍光体やファイバーオプティックス と組み合された、最新鋭のCCD/TV観察システム により、CRT上で最高3千万倍で原子配列の直接 観察ができる。これは1オングストロームを3mm まで拡大することに相当する。
- ④高速画像処理システムにより、画像のオンライン 処理、光軸の精密調整、電顕像のコンピューター シミュレーションが容易に行なえる。
- ⑤パラレル検出型電子線エネルギー分光装置 (PEELS)により、軽元素の化学分析や電子状態の解析等ができる。
- ⑥試料冷却ホルダー(液体ヘリウム、液体窒素)により、約20K~室温の間での電顕観察ができる。

本装置を用いて我々は直ちに無機材料中の酸素原 子の観察を始めとするいくつかのテーマに着手した。 ここでは酸素原子の観察の最初の成功例として、酸 化ジルコニウム(ジルコニア)の高分解能電顕像(4) を紹介する。試料は東ソー(㈱製の立方晶ジルコニア で、安定化のためイットリウムが数%添加されてい る。本試料をテストサンプルとした理由は、構造が 比較的単純で、酸素観察の成否の判定が容易である と考えられたためである。図2(a)に結晶構造の c 軸 投影図を示す。4つのジルコニウムの作る正方形の 中心に酸素原子があり、投影方向に酸素はジルコニ ウムの倍の密度で並んでいる。最近接のジルコニウ ムと酸素の水平距離は約1.7オングストロームであ

る。図2(b)に本電子顕微鏡で撮影された高分解能電 顕像(1000kV)を示す。強い黒点及び弱い黒点の規 則的配列が観察されるが、これは各々ジルコニウム と酸素原子の位置に対応していると解釈される。こ れを確認するために、計算機による電顕像のシミュ レーションを行なったのが図2(c)である。この計算 は新超高圧電顕に付属の高速画像処理システム(ア ポロ;DN3500)でなされたものであるが、電顕像と の良い一致が見られた。この様に新設の超高分解能 超高圧電子顕微鏡を用いることにより、酸化物中の 酸素原子の直接観察が可能であることが実証された ことになる。今後無機材質研究所においては、本電 子顕微鏡を用いて、酸化物高温超電導体の酸素ある いは酸素欠陥の構造解析を早急に実施する予定であ る。

文 献

- 1 松井良夫:表面科学10 (1989) 719.
- 2 松井良夫:Study of High-Temperature Superconductors (Nova Science Pub., New York) vol. 5 (1990) 243.
- 3 Ultramicroscopyに2件の論文を投稿中
- 4 Y. Matsui et al., Jpn. J. Appl. Phys. 30 (1991) L64.

図2 ジルコニアの結晶構造(a)、高分解能電顕像(b)、 並びにコンピューターシミュレーション像(c)。

単原子層グラファイトの生成と評価

図1 グラファイトで覆われたNbC (111)のLEED 写真。電子線のエネルギーは131.1eV。六角形 で示したのが下地とグラファイトの基本格子 反射点、それ以外のものが衛星反射点。

グラファイト (黒鉛) は炭素原子から成る六角網 状のシート(格子定数 a = 2.46 Å)がABAB……と 2つのサイトに交互に積み重なってできた典型的な 層状物質である(積み重なり方向の周期 c= 6.70Å)。炭素原子はsp²混成軌道によって六角網状 に結合し、また残ったpz電子はシートの上下に分布 してπ結合を形成し空いた結合手が存在しない。こ のためシート1枚1枚は化学的に非常に安定であり、 気体分子等が反応しにくく、大気中ですらSTM (走 査トンネル顕微鏡)を用いて容易に原子像を得られ るいという稀有な例となっている。積み重なった シート同志の間の結合はたいへん弱く、容易に滑っ たり剝がれたりするために、身近な例では鉛筆の芯 などに使われている。ドアなどの鍵が鍵穴に入りに くくなったとき、鉛筆でこすると良いといわれるの も、このようなグラファイトの固体潤滑材としての 性質を利用しているためである。

我々のグループで遷移金属炭化物の単結晶を、高 輝度電界放射冷陰極など高機能材料として応用しよ うと研究を進めている。直径 8 mm程の大きな単結晶 から直径0.2mmくらいのチップを切り出し、先端を電 解研磨によって鋭く尖らせたものを真空中に入れ強 電界をかけると、電子ビームが放出される。このビー ムの電流はチップの表面状態に非常に敏感に影響さ れる。このため通常の真空度では、残留ガス吸着等 の表面状態変化により電流が不安定となってしまい 実用化できなかった。これに対し我々のグループで は、 C_2H_4 などのガス雰囲気下でチップを加熱処理す ることにより、ビームの安定性を大幅に向上させ得

Wave Number (Å⁻¹)

ることを見いだした²⁾。そこで、このような処理を行 なったときに表面でなにが起こっているのかを、 LEED(低速電子回折)、AES(オージェ電子分光 法)、HR-EELS(高分解能電子エネルギー損失分光 法)などを用いて調べた。

まず、単結晶棒よりNbC (111) 面を切り出し、鏡 面研磨したのち真空中で1700°C以上の加熱清浄化を 行なう。この試料表面を1000°Cに保ち C_2H_4 ガスに数 百L (1Lは 1×10⁻⁶torr·sec) 露出するとAESスペク トルのCKVVピークが変化し、表面がグラファイト 状の炭素で覆われたことがわかる。LEED像は図 1 に示すように下地からの回折斑点とグラファイト格 子による回折斑点が重ね合わさっただけでなく、こ の 2 つの格子ベクトルの和や差に対応する位置に多 数の衛星反射点が現れる。これらが単に多重回折に よって出てくるのか、それともグラファイト自体に 下地と非整合であるための変調構造が生じているの かは未だはっきりしないが、このグラファイト層が 電子線の平均自由行程(このエネルギー帯では10Å 以下)よりも薄いことは間違いない。さらに、LEED パターンから格子定数を求めると、a=2.52± 0.02Åとなり、純グラファイトよりも約2%伸びて いた。HR-EELSを用いて測定したこの表面のフォ ノン分散を図2に●で示す。○で示したのは比較の

図3 単原子層グラファイトがのったNbC (111)面 とNbC (100)面の模式図。NbC (111)面で は金属原子から成る極性面にグラファイトが 接しているが、NbC (100)面では金属と炭素 とから成る中性面に接する。

ための純グラファイトで測定されたデータ³である。 図中LA、LOと名付けたモードは、それぞれ、原子が 表面と平行に振動する縦波の音響モード、光学モー ドであり、SHA、SHOは同様な横波モードである。 ZA、ZOは面と垂直に振動する音響、光学モードであ り、図2からわかるようにこれらのモードは純グラ ファイトに比べて著しく変化している。解析の結果、 ZOモードが下がっているのは、グラファイトシート を曲げたりねじったりする力に対する弾性が弱く なっていることを、またZAモードが上昇しているの は下地との間に純グラファイトの層間力と比べてか なり強い結合が存在することをそれぞれ示している。 このようなグラファイトシート内での結合の変化は これまで報告例がなく、我々のグループではじめて 発見された^{4~7}。炭素の結合様式より考えて、この変 化は下地からグラファイトに電荷が移動したことに より双方の間に強い結合ができ、また同時にその電 荷移動によりシートの上下に分布するπ結合が選択 的に弱くなって曲げに対する力が弱化したために生 じたものだと考えられる。この電荷移動は格子定数 の変化とも矛盾しない⁸⁾。もし、表面のグラファイト が多層であったならば、この電荷移動の度合が各層 で異なるはずであるからいくつもフォノンモードが 出るはずだが、実際は1つしか現れないので、この グラファイト層が紛れもなくたった1枚の原子シー ト(単原子層)から成っていることが示されたこと になる。

さて、同様な実験をNbC (100) 面で行なうと、必 要なC₂H₄露出量は数万Lと多いが、やはりグラファ イトで覆われた表面が得られる。ところがこの場合 には、(111)表面上の場合とは違って、HR-EELSで 測定された表面フォノンはほとんど純グラファイト の分散と変っていなかった。図3に模式的に示した ように、前者は金属原子のみでできた極性表面にグ ラファイトがのっており、後者では金属と炭素が 半々で構成された中性表面にのっている。この、グ ラファイトが直に接している下地構造の違いにより、 電荷移動の量に大幅な差異を生じ、これによって フォノン構造に大きな違いが生まれると考えている。 この2つの表面の電荷供給能力の差が、この表面を グラファイトで覆うときに必要なC₂H₄ガス露出量 の差、言い替えれば化学反応活性の差となっても現 れている。

このように、炭化水素系のガス処理によって表面 に単原子層グラファイトが形成されていること、さ らにこのグラファイト膜内の炭素原子間の結合や下 地と膜の間の結合の様子などがわかってきた。この ような現象はNbC表面上に限らず、TiC、HfC、 TaC、WCなど他の遷移金属炭化物表面でもみられ る。電界放射電流が安定化したのは、表面がグラファ イトのシートで覆われ、残留ガスと反応しにくく なったためであると考えられる。たった1原子層で あっても充分効果があることは、実際、単原子層の グラファイトを形成した試料を一旦大気中に出して も、その表面でSTMによる原子レベルの像が得られ ている⁹ことから明らかである。均一な単原子層の 膜が容易に得られるのも、1原子層完成してしまう ともうそれ以上ガスが吸着せず、グラファイト生成 反応が進まなくなるためだと考えられる。このよう に、単原子層グラファイトは基礎科学的に見ても興 味ある系であると同時に、表面の不活性化など応用 上もこれからが期待される物質系である。

文 献

- S. Park and C.F. Quate: Appl. Phys. Lett. 48, 112 (1986).
- Y. Ishizawa, S. Aoki, C. Oshima and S. Otani: J. Phys. D Appl. Phys. 22, 1763 (1989).
- C. Oshima, T. Aizawa, R. Souda, Y. Ishizawa and Y. Sumiyoshi; Solid State Commun. 65, 1601 (1988).
- 4) T. Aizawa, R. Souda, S. Otani, Y. Ishizawa and C. Oshima: Phys. Rev. Lett. 64, 768 (1989).

ε -& τ -走杳法(ディフラクトメータによる多結晶体の評価)

1 はじめに

粉末X線回折法は合成物や鉱物の同定及び結晶構 造の決定に最も役立っている手段の一つである。最 近、高温超電導体の発見を機に、その結晶構造にリー トベルト法を適用した精密解析が成功して以来、こ の方法を用いた粉末試料による結晶構造解析が盛ん に行われるようになって来た。しかしながら、『粉末 X線回折法で求めた格子定数は信用できるが、その 反射強度は信頼できない』と言われている問題は解 決されていないまま、いまだに残っている。例えば、 先年、Ni粉末が世界の粉末X線測定をする研究室に 配布され、測定された結果の報告では、最強線の構 造因子の自乗は5%の信頼性も無いとのことであっ た。各研究室毎の測定値の偏差値はこれよりもっと 小さいと思われるが、この報告以後、粉末X線回折 法による精密測定は一時下火になっていた。

粒度の粗さ、配向性或いは充塡の不均一性などの 粉末試料中の結晶粒子の分布状態に異常がある場合、 その粉末X線回折法によって測定された反射X線の 強度には変動が現れ、その変動の大きさは測定方法

 図1 εとτ走査法の光学系の概念図。D.S.:発散ス リット、R.S.:受光スリット

第5研究グループ 主任研究官 雪野 健

5) T. Aizawa, R. Souda, S. Otani, Y. Ishizawa

6) T. Aizawa, R. Souda, Y. Ishizawa, H. Hirano,

8) C.T. Chan, W.A. Kamitakahara and K.M. Ho:

9) H. Itoh, T. Ichinose, C. Oshima, T. Ichinokawa

Sci. 237, 194 (1990).

7)相沢 俊:表面科学11, 398 (1990).

Phys. Rev. Lett. 58, 1528 (1987).

and T. Aizawa: to be published.

and C. Oshima: Phys. Rev. B 42, 11469 (1990).

T. Yamada, K. Tanaka and C. Oshima: Surf.

やその条件によって変わる。従って、電子顕微鏡や 粒径分布測定装置等の他の観察手段の測定値は参考 にはなるが、用いられた粉末試料そのものの充塡状 態を必ずしも示していない。これ故に、信頼性がな い原因の一つとして、試料の充塡状態の異常による X線反射強度に対する影響を、"回折計により直接評 価する方法"がなかったことによると筆者らは考え、 反射強度測定に使用する粉末試料そのものを、ディ フラクトメータ(通称回折計、粉末X線回折計、 XPD) 上で直接評価することが最も重要であり、 ディフラクトメータを使用して、多結晶体中に存在 する結晶粒子の分布状態を確実にかつ簡便に評価で きる角度走査法(ε走査法)および平行走査法(τ走 査法)を考案し、かつ、それらの有効性を実証した ので紹介する。更に、これらの方法を発展的に応用 して、試料中の結晶粒子の分布状態(大きさ・方位・ 形

・充塡度)を観察する

走査型X線回折顕微鏡 (SXDM)を考案したので併せて紹介する。これら の方法は、X線反射強度の測定のための試料の評価 はもとより、セラミックス・ガラス等の非晶質体・ 金属材料等の結晶成長、或いは材料の疲労による結 晶粒子の破壊などの観察・測定・検査に役立つと考 えられる。

2 ε走査法とτ走査法の原理と測定

ε走査法は、ディフラクトメータの検出器系をブ ラッグ条件を満たす位置2 θ に固定したまま、試料の みを θ 軸回転し、対称反射のブラッグ角 $\theta_{\rm B}$ (回折角) からのずれの角 ϵ に対する反射強度の変動を解析す る方法(図1A)で、 τ 走査法は試料を一定角 ϵ 傾け て、試料表面に平行に移動させて、場所による反射 強度の変動を観察する方法(図1B)である。ここで は、発散したX線を平板試料に照射し、試料からの 反射X線(回折X線)のうちで受光スリットを通過 する部分のみを検出する方法、即ち、集中法を用い た通常のディフラクトメータの光学系の例を示して いるが、これらの方法は他の粉末X線回折法にも適 用できる。なお、これは、ロッキング曲線法やラン グ法などの単結晶のX線顕微法と同様な方法を採っ ているが、単結晶法ではブラッグ角近傍の狭い角度 領域 ($\epsilon \neq 0$)で反射が起こるのに対して、この粉末 法では反射が角 ϵ の全域で起こっている。 ϵ 走査法は ディフラクトメータのなんらの改造無しで、結晶粒 子の角度分布 (大きさ・方位・充塡度)の異常を定 性的に観察することができる簡便で確実な方法であ る。

図 2 ディフラクトメータ法 (θ/2θ走査法)(A)とε走 査法(B)による反射強度のプロフィール

- 図3 発散スリットの巾 (D.S.) と受光スリットの巾
 (R.S.) を変えたときの粒径 2 µmのLiF 200
 のε走査図形
- 2-1 細かい結晶粒子によるを走査法の回折図形 図2は、粒度ほぼ1µmのLiFの111反射のディフ ラクトメータ法(0/20走査法)(図2A)およびを走査 法(図2B)によって得られた回折図形である。図の 右上にはピークの時間変動を合わせ示した。このを 走査図形の振れ巾は、この時間変化の振れ巾と同程 度であるので、この測定条件の下では粒度の影響は 観測されていない。発散スリットや受光スリットの 巾を変えた場合の平滑化したLiFのを走査図形を図 3に示す。ディフラクトメータを用いたを走査法で は、照射角が小さくなれば(を<0)、入射X線の照 射面積は広がり、それに伴って反射X線も広がり、

受光スリットを通過する反射X線の量は少なくなり、 反対に、照射角が大きくなれば($\epsilon > 0$)、この逆に なる。この傾向は、平行光線として計算された ϵ 走査 図形と同じであるが、照射角が大きいときでもその 広がりは多少大きくなる。これ故に、発散スリット が狭いほど、また、受光スリットが広いほど、平行 線近似の適用範囲は広がることがこの図形からも分 かる。なお、 ϵ 走査図形の緩やかなピークの位置は $\epsilon = 0$ でなく、測定条件に依存して、受光スリット等 による反射X線の遮りが少なくなれば、その位置は ϵ のより負側にずれる。

充填の異常が少い試料からの ε 走査図形は、回折 角と測定条件によって定まる。この例として、LiF、 粒度2.5 μ m以下のGaAsおよび3 μ m以下のZnSeの ε 走査図形から求めた回折角 θ に対する半価巾W

(W_P 、 W_N および W_H)を図4に示す。ここで、W (W_P 、 W_N および W_H)は $\epsilon = 0$ の反射強度の半分に なる角度(ϵ が正側、負側の絶対値及びその和)をそ の回折角で除した値である。配向性を示す直径2mm ϕ 以下のマダガスカル産グラファイト001の半価巾 も合わせ示した。これには充塡の不均一性による曲 線の乱れが見出された。この図形は他の配向性の少 ない試料の図形よりその巾が極端に狭くなっている。 この結果、細かく均一に充塡された粉末試料の ϵ 走 査図形は試料の線吸収係数によらず、回折角と測定 条件によって決められ、そして配向性が在るときは、 この図形から推定できる曲線からずれることが分 かった。

図4 微細な結晶粒子のZnSe、GaAs、LiFと配向性 のあるグラファイトの ϵ 走査図形の半価巾W ($\epsilon = 0$ の反射強度に対するその1/2の反射 強度の角度をブラッグ角 θ で割った値で、 $\epsilon >$ 0 側のW_P、 $\epsilon < 0$ 側のW_N、およびその和の W_H)

2-2 配向性による ε 走 査法の回折図形

図4から分かるように、グラファイトの半価巾は 極端に小さく、この半価巾の勾配は他の試料の勾配 が正であるに対して、反対に負になっている。これ はグラファイトの配向に起因する。グラファイトの 回折角に対する配向性の無いとしたときの ϵ 走査図 形を他の充塡異常の少ない試料の ϵ 走査図形から内 挿して求め、配向が存在する場合と存在しない場合 の反射強度の比を求めた。この比を ϵ に対する配向 性の角度分布と定義し、グラファイトの配向性の角 度分布 $r_{P}(\epsilon)$ を図5に示す。発散スリット巾0.05 mm、受光スリット無しの場合の002反射の場合をも合 わせ図に示した。この同一方位を有し、その高次反 射を示す結晶粒子の角度分布は同一であることから、 充塡に異常のない試料の ϵ 走査図形は、測定条件に よって決まるとした仮定が正しいことを示す。

図 5 マダガスカル産グラファイトの配向性の角度 分布r_P(ε)

2-3 粗い結晶粒子による ε 走査法と τ 走査法の 回折図形

ディフラクトメータの光学系調整用のSi圧粉体の SEM像を写真1に示す。この写真から、最大の直径 が100µmの結晶粒子が表面には存在することが分 かった。また、ディフラクトメータの光学系をSiの 111反射のピークに合わせ、試料の前面で斜めにX線 フイルムを置いた場合の回折像を写真2に示す。こ の写真はSEM像から予想されるような大きな回折 斑点があり、この試料は比較的大きい結晶粒子から 構成されていることが分かる。この試料のSiの111ε 走査図形およびτ走査図形を図6および図7に示す。 ε走査図形には所々に鋭いピークが現れている。高 いピークは100µmの粒子からと思われ、その位置の 角度 θ と $\theta_{\rm B}$ (ブラッグ角)との差 ϵ はこの粒子の反射 に寄与する格子面が試料表面から角度

を傾いている ことを示している。 τ 走査図形は対称反射($\epsilon = 0$) の場合の図形である。この時の発散スリットは0.5° であるので、試料表面の法線方向に対して±0.25°の 範囲にある結晶粒子からの反射による図形である。 また、厳密には吸収効果をも考慮する必要があるが、 実効的には表面付近の結晶粒子からの反射と考えら れるので、これはこの角度範囲に結晶の方位を有す る粒子の一次元の分布図であると考えられる。τ走

写真2 ディフラクトメータの光学系を111反射の 位置に合わせ、X線フィルムを試料と一定角 に設置したときの光学系調整用のSi圧粉体の 回折像

図6 ディフラクトメータの光学系調整用のSi圧粉

図 8 粒度に対するα-Al₂O₃ 116のε走査図形 査法は試料の充填状態の異常の存在を位置の関数と して検出することができる。

粒度#8000~#240 (平均粒径1.75~62 μ m)の α -Al₂ O₃の116 ϵ 走査図形を図8に示す。この走査の範囲は $\epsilon = \pm 1$ °である。図から分かるように、粒子の粒度が 大きくなると反射強度の振れ巾も大きくなり、その 粒径が小さいときはその平均曲線は平行線近似から 期待された値に近い。また、反射強度の高さは試料 の密度に依存するものと考えられる。更に、測定条 件の発散スリットと受光スリットの巾を変えた測定 では、その平均の反射強度は発散スリットの巾と受 光スリットの巾とを乗じたものにほぼ比例して増加 するが、粗い粒子による振れ巾は比例しては大きく ならなかった。

上記のことから、測定条件によって定まるε走査 図形からのずれは試料の充塡状態に異常が存在する ことを示し、そのずれの様子から充塡異常の原因を 予想することが出来る。全体的な大きなずれは配向 性の存在を示し、その大きさから配向性の角度分布 を知ることが出来る。更に、配向性の高い格子面を 有する結晶粒子の角度分布が広範囲に測定できれば、 $\epsilon = 0$ における任意の格子面を有する結晶粒子の角 度分布が推定できる。部分的な小さなずれは充塡率 の部分的な異常の存在を示す。その図形に鋭いピー クや谷がある場合は、粗い結晶粒子の存在を示し、 粒子の大きさに応じて、その振れ巾も大きくなって いる。また、 ϵ 走査法の角度分解能は、 $\theta / 2 \theta$ 走査法 と同じであるが、試料内部の結晶粒子から寄与と同 様な機構で、他の回折線によるε走査図形が混入す ることもある。なお、ラウエ関数を利用した通常の 半価巾法で求められる平均粒径はおおよそ100A~1 μmの範囲であるが、ε走査法で求められる粒径は約 1µm以上である。

3 走查型X線回折顕微鏡(SXDM)

ディフラクトメータを使用した ε走査法もτ走査 法も上記に述べたように試料の充塡の異常を検出す ることが出来るが、広がった X線を試料に照射する

図 9 集束X線を用いた走査型X線回折顕微鏡の光
 学系の概念図

ので結晶粒子の位置と方位に曖昧さがある。この位 置と方位とを観察する方法には細い平行X線を用い た走査型X線回折顕微鏡(SXDM)がある。これは 発散する或いは集束X線を用いる粉末回折法の特徴 を生かしていない。SXDMとして考案した一つで、 集束X線を用いた方法を図9に示す。これは発散X 線を弯曲結晶モノクロメータにより集束したX線を 試料に照射し、試料からの反射X線を弯曲結晶モノ クロメータにより再び集束させる光学系である。検 出器として位置敏感型のX線フィルム・IP・原子核 乾板・PSPCなどの検出器を用い、試料を角ε傾けて 移動させ、試料の移動に検出器を同期させる方式を 採用している。この方式では位置の特定が可能であ るが、方位の曖昧さは残っている。試料の表面は平 面でも曲面でも良い。このSXPDはディフラクト メータとしても使用可能である。方位の曖昧さ即ち 角度θの曖昧さはステップ走査をすることにより或 程度小さくすることは可能である。このディフラク トメータの試料は少量で良く、更に場所による結晶 構造の違いを知ることができる。上記の装置等に関 しては特許を申請中である。

参考文献

- G. W. Blendly and F. W. Spiers: Proc. Phys. Soc. 46 (1934) 841; though H. S. Peiser, H. P. Roosby and A. C. Wilson: X-Ray Diffraction by Polycrystalline Materials (Inst. Phys., London, 1960) p. 159-160.
- 2) R. Berthold: Z. Angew. Phys. 7 (1955) 441.
- R. J. Weiss: X-Ray Determination of Electron Distributions (North-Holland, Amsterdam, 1966) p.98.
- K. Yukino and R. Uno: Jpn. J. Appl. Phys. 25 (1986) 661.
- 5) K. Yukino: PC Report 7 (1989) 401.
- 6)雪野健、和田壽璋、小林勇二:日本物理学会 1990年秋の分科会講演予稿集2 p. 526.

外部発表

投稿

登録番号	題		<u></u>	ž ž	表 1	 	揭 載 誌 等
2521	Thermodynamics, Pha	ase Relations, and	三友	護			Silicon Nitride-1
2522	Sintering Aids of Sint Effect of the Pressure Substitution on the Ve YFe_2O_4	and the Rure-Earth rwey Transition of	白毛利橋田田	紀信博玄ビ	 ・岸 ・中川 ・君塚 ・飯田 	文夫 康 昇 二	Journal of the Physical Society of Japan 59. 2, 631, 1990
2523	ピロリン酸カルシウム(のβ≓α転移挙動	門間	英毅			Gypsum & Lime 225, 1990
2524	Die Struktur Vanadiumbronze Cu _{0.2} feinerung	der Kupfer- ₂₆₁ V ₂ O ₅ : Eine Ver-	加藤 菅家	克夫 康	・室町	英治	Acta Cryst. C45, 1845, 1989
2525	Intercalation of 2-A substituted β-Cyclode	minopropylamino- extrin by α - and	木島	剛			J. Chem. Soc. Dalton Trans 425 1990
2526	Density-functional ap magnetic semiconduc bound states of elect concentration increase	pproach to doped tors: Evolution of rons as the donor	梅原	雅捷			Physical Review B 41, 4, 2421, 1990
2527	Electron-Doped Syste CuO ₄ and Preparatic	em (La, Nd, Ce)₂ on of T'-Type(La,	室町 加藤	英治 克夫	・内田	吉茂	Physica C 165, 147, 1990
2528	Some properties of isopropoxide-hydrogetions and their decomp	aqueous titanium enperoxide solu- position to produce	塩田	勝			Journal of Materials Sci- ence 23, 1718, 1988
2529	titanium dioxide 均一沈殿法によるイッ ネット粉体の合成とその	テルビウム鉄ガー の焼結	羽田渡辺	肇 明男	・柳谷 ・白嵜	高公 信一	日本セラミックス協会学 術論2,005,1000
2530	Preparation of V ₈ C ₇ S SHS Material Using F nique	ingle Crystals from loating Zone Tech-	大谷 石沢	茂樹 芳夫	・田中	高穂	98, 3, 285, 1990 Proceeding of the first US-Japan Workshop on Combustion Synthesis
2531	 放射光の分光結晶と人工 子に日米共同研究進む	工衛星の熱電変換素	田中	高穂			115,1990 工業レアメタル 100,22,1990
2532	Tunneling spectrosco ceramics	py of conductive	小塩田中小野	高順三見	 ・ 神薗 ・ 酒井 ・ 江原 	保彦 善行 襄	J. Vac. Sci. Technol. A 8, 1, 455, 1990
2533	Scanning Auger Mic tion of Grain Bounda Some Electroceramics	roprobe Investiga- try Segregation in	丧 一 田 中 羽 田 田 田 田 田 田 田 田 田 田 田 田 田	及 順 三 一 修 一	・岡村富 ・白嵜	富士夫 信一	Colloque De Physique 51, 1, 1055, 1990
2534	Strukturverfeinerung	des kompositkris- malen Raum	加藤	克夫			Acta Cryst. B 46, 39, 1990
2535	Behaviour of graphit sion using Ni-Cu and	e-diamond conver- 1 Ni-Zn alloys as	閻 大沢 海阜	学佛 俊一 修	・神田 ・山岡	久生 信夫	J. Materials Science 25, 1585, 1990
2536	Adsorption behavior o layered dthydrogen tet fibers in Aqueous Solu from 298 to 523 K	f cobalt (II) ions on tratitanate hydrate itions in the Range	小松渡辺	優遵	・藤木 ・佐々オ	良規 「高義	Solvent Extraction and Exchange 8, 1, 173, 1990
2537	超高温耐熱セラミックン	ス	三友	護			エネルギーフォーラム 26 425 140 1000
2538	Growth of high Quality YB_{66}	v Single Crystals of	田中 石沢	高穂 芳夫	・大谷	茂樹	Journal of Crystal Growth 99 994 1990
2539	Preparation of V ₈ C ₇	Single Crystal by	大谷石泥	茂樹 苦去	・田中	高穂	J. Crystal Growth
2540	Growth of Cadolinium Garnet (GLGG) Single	Lutetium Gallium c Crystals by Czo-	」 宮沢 埴田	7〕 靖人 眞一	・豊嶋 ・小玉	博昭 展宏	Journal of Crystal Growth
2541	Structural Features an erties of the (Ln_{1-x-y}, T^x)	nd Electrical Prop- Ln'x Sry) ₂ CuO ₄₋₈	大橋 福長	直樹 脩	・井川 ・田中	博行 順三	Physica C 166, 465, 1990

2542	Crystal Growth and Properties of Fe_4 $Mo_6\;S_{8-\nu}$	和田 弘昭・野崎 浩司 石井 紀彦	Journal of Crystal Growth
2543	等方圧加熱によるカルシウム欠損水酸アパ タイトの緻密化	金 壽 篭・広田 和士 岡村富士夫・長谷川安利	99,973,1990 日本セラミックス協会学 術論文誌
2544	Synthesos, Structures, and Solid State Properties of one-Dimensional Halogen- Bridged Ni ^{III-} X-Ni ^{IIS} Compounds (X=Cl and Br)	↑ 鳥海幸四郎・藤井 有起 P. Doy・岡本 博 R.J.H Cbrty・三谷 洋興 P.J. Mchnol・阪東 俊治 A.J. Edword・山下 正 廣 D. Watkin・和田 芳樹 M. Kumao	Mol. Cryst. Liq. Cryst. 181, 333, 1990

\Rightarrow MEMO \Rightarrow

研究会

12月1日、第4回ガラス及び非晶質状態研究会が 「ゾルーゲル法の応用」の議題で開催された。

12月25日、第23回高融点化合物研究会が「レーザー アブレーションによる酸化物超電導体の原子層制御 による超格子作製」の議題で開催された。

1月21日、第24回高融点化合物研究会が「ホウ化 物研究の最近の進展」の議題で開催された。

1月30日、第6回結晶構造解析研究会が「超高圧 電子顕微鏡における電子線損傷」の議題で開催され た。

人事異動

門間英毅(第15研究グループ主任研究官) 研究開発局総合研究課材料開発推進室専門職の併任 を解除する。

渡辺昭輝(未知物質探索センター主任研究官) 研究開発局総合研究課材料開発推進室専門職に併任 する。 (以上平成2年12月1日付)

渡辺 遵(第7研究グループ主任研究官) 管理部企画課主任研究官の併任を解除する。

赤羽隆史(第14研究グループ主任研究官)

管理部企画課主任研究官に併任する。

海外出張

第3研究グループ主任研究官長谷川安利は、「酸化物セラミックスの研究指導」のため平成2年12月1 日から平成3年3月22日までブラジル国へ出張した。

第8研究グループ主任研究官加茂睦和は、「先端材 料における技術革新への日米文化の影響会議におい て講演」のため平成2年12月8日から平成3年12月 17日までアメリカ合衆国へ出張した。

外国人の来所

 来訪日時 平成2年11月27日(火) 来訪者名 Hahn, Suk-Ki他1名 韓国 科学技術研究院 経済分析室 長 他1機関

2. 来訪日時 平成2年12月4日(火)

来訪者名 Mr. Fernando Agusto Actis 他 8 名 アルゼンチン 国立工業技術院計量 及び材料研究セン ター研究院 他 8 機

関

- 3. 来訪日時 平成2年12月7日(金)
 来訪者名 Dr. Jin-Ho Choy
 韓国 ソウル国立大学化学科無機化
 学研究室 教授
- 4. 来訪日時 平成3年1月21日(月)
 来訪者名 Dr. Roger B. Poepel 他1名
 米国 DOEアルゴンヌ国立研究所
- 5. 来訪日時 平成3年1月25日(金)
 来訪者名 Dr.金 煥
 韓国 ソウル大学校工科大学無機材

料工学科 教授 研究所の一般公開について

平成3年度の科学技術週間は、4月15日(月)か ら4月21日(日)までの7日間で開催されます。 当研究所では、4月19日(金)に所内一般公開を 行います。

発行日 平成3年3月1日 第126号
 編集・発行 科学技術庁 無機材質研究所
 NATIONAL INSTITUTE FOR RESEARCH IN INORGANIC MATERIALS
 〒305 茨城県つくば市並木1丁目1番
 電話 0298-51-3351