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Efficiency and Angular Distribution of Graphene-Plasmon Excitation by Electron
Beam

Tetsuyuki Ochiai

Photonic Materials Unit, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan

We theoretically study the efficiency and angular distribution of a graphene-plasmon excitation by an electron beam.
An electron beam incident on doped graphene induces the out-of-plane transition radiation and in-plane plasmon-
polariton waves. At the same time the electron loses its kinetic energy by energy conservation. From the momentum-
resolved energy-loss spectrum, we can determine how much kinetic energy of the electron is converted into the transition
radiation and plasmon-polariton excitation. Numerical results are presented by changing the incident angle and electron
velocity. We find that the graphene plasmon polariton of particular frequency can be excited by an electron beam of ap-
propriate velocity. Moreover, a deeply tilted incidence of the electron beam very efficiently excites the graphene plasmon
polariton with an angular distribution range from −30 to 30 degrees. We also show that the transition radiation through
graphene exhibits a peak at the threshold energy of the interband transition. These theoretical results are obtained un-
der the local-response approximation of the optical conductivity as well as under the plasmon pole approximation. The
results are also compared with those obtained in a thin metallic slab.

1. Introduction

Over the last few decades, various interesting phenomena
using plasmons have been discovered in metallic nanostruc-
tures.1, 2 A plasmon, a collective excitation of many elec-
trons,3 couples with light, forming a coupled oscillation called
a plasmon polariton. A plasmon polariton emerges as an
eigenstate of light in metallic systems and can enhance var-
ious light-matter interactions. The enhancement is closely re-
lated to a subwavelength spatial profile of a plasmon polari-
ton. For instance, a surface plasmon polariton localized in
an interface between dielectric and metallic substances has a
wave number |k∥| much larger than the vacuum wave number
ω/c.4

Recently, in addition to metallic systems, doped graphene
in plasmonics has been receiving much attention.5 It has free
carriers obeying the Dirac spectrum and supports the sheet
plasmon in it. Such a collective excitation enables the control
of light in a one-monolayer-thick atomic membrane, and is
now becoming an ultimate platform for plasmonics. Its po-
tential is manifested by the perfect absorption of light and
the vacuum Rabi splitting of an adsorbed molecule, which
are theoretically predicted in patterned graphenes through a
graphene plasmon polariton.6, 7

Plasmon polaritons in patterned metallic and graphene
nanostructures such as cavities, waveguides, and gratings, fur-
ther exhibit complex subwavelength profiles whose length
scales are much shorter than their vacuum wavelengths. Such
a complex mode is difficult to excite selectively by optical
means, because similar plasmon-polariton modes with dif-
ferent spatial profiles tend to degenerate with the mode un-
der consideration. However, a selective excitation of a given
plasmon-polariton mode is quite favorable for various appli-
cations, as the enhancement is not hidden by possible inter-
ference effects among degenerate modes.

An electron beam provides a solution to this problem.
It is, after all, plasmon-friendly. Moreover, it can have a
focusing-spot size on the order of Angstrom, much shorter
than the subwavelength scale of the plasmon polariton under

consideration.8 A combination of electron-energy-loss spec-
troscopy (EELS) and optical spectroscopy in scanning trans-
mission electron microscope (STEM) seems to be best-fitted
to nanoscale plasmonic systems.

When a fast electron beam is incident on a plasmonic sys-
tem, it excites a plasmon polariton, and radiation emission is
induced. By energy conservation an incident electron loses
its kinetic energy in this process. Momentum transfer is also
observed between the beam and the plasmonic system. There-
fore, the energy-loss and radiation-emission spectra, both in a
momentum-resolved manner, provide detailed information on
metallic and graphene nanostructures.9

Experimentally, momentum-resolved EELS is difficult
to implement for small momenta far below atomic-scale
momenta. However, momentum-resolved radiation-emission
spectroscopy in a STEM setup has proven its advantages for
various plasmonic systems.10, 11 EELS alone in STEM also
provides deep insights into plasmonic systems.12–14

Historically, the interaction between an electron beam and
a metal tends to be argued in two different contexts in physics.
One is the solid-state physics context, where the nonretarda-
tion approximation is widely employed, and electron energy
loss and nonretarded plasmon dispersion are of primary in-
terest. The other is the beam physics context, where retar-
dation is fully taken in account, and the properties of emit-
ted lights (e.g., transition radiation,15 Cherenkov radiation,16

bremsstrahlung, and Smith-Purcell radiation17) are of primary
interest. Here, we deal with the two contexts in a unified man-
ner, by employing a retarded approach to EELS. Retardation
is inevitably accompanied by radiation emission. Thus, the
energy-loss and radiation-emission spectra can be dealt with
on an equal footing.

In this paper, we present theoretical results of the elec-
tron energy-loss and transition-radiation spectra in the local-
response approximation of the optical conductivity of doped
graphene. The plasmon pole approximation18 is also em-
ployed to evaluate the excitation efficiency and angular dis-
tribution of the graphene plasmon polariton. For comparison,
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we also consider similar quantities in a thin metallic slab, and
compare the results with those of doped graphene. The ulti-
mate thickness of such graphene exhibits a marked contrast to
that of the metallic slab.

This paper is organized as follows. In Sect. 2 we present
a basic theoretical framework for graphene optical responses
as well as the interaction with the electron beam transmitted
through graphene. We summarize a corresponding theory for
homogeneous slabs in Sect. 3. In Sect. 4 we present numeri-
cal results of the electron-energy-loss and transition-radiation
spectra, the excitation rates of a plasmon polariton, and the
angular distributions of a plasmon polariton as well as the
transition radiation in doped graphene. We also compare the
results with those in a thin metallic slab. We give the conclu-
sions drawn in Sect. 5. In Appendix, we present the energy-
loss spectra for an electron traveling parallel to graphene, as
an extreme case.

2. Graphene

2.1 Optical response of graphene
Let us model graphene as an infinitely thin electrically con-

ducting sheet placed at z = 0. For simplicity, we assume
a local response in conductivity, so that the induced two-
dimensional (2d) current j∥(x∥) is given by ←→σ E∥(x∥) with
the spatially independent conductivity ←→σ and the in-plane
electric field E∥(x∥). In the optical regime, this current can
be regarded as the polarization current. Therefore, graphene
can also be modeled with a dipole sheet with polarizabil-
ity ←→α 0|2d = i←→σ /ω. In principle, graphene can have the
out-of-plane polarizability in addition to the in-plane polar-
izability ←→α 0|2d. However, the out-of-plane components (the
xz, yz, zz, zx, and zy components) are generally small, taking
account of the selection rule of the π orbitals of graphene.
Near the Fermi level, valence and conduction bands are of
the π band, whose atomic orbital has the pz symmetry. There-
fore, dipole matrix elements relevant to the out-of-plane po-
larizability, namely, ⟨0|z|n⟩ (|0⟩ and |n⟩, which are the ground
state and an intermediate state, respectively, in the Kramers-
Heisenberg formula of the conductivity) vanish because of the
symmetry. In what follows, we thus neglect the out-of-plane
components of the polarizability.

Since graphene can be regarded as a dipole sheet, light scat-
tering by graphene is nothing but Rayleigh scattering. Sup-
pose a time-harmonic incident light E0(x) = E0

k(z) exp(ik∥·x∥)
is coming to the dipole sheet. This light is then scattered by
the dipole sheet. The Maxwell equation that describes the
scattering is given by

∇ × E(x) = iωB(x), (1)

∇ × H(x) = −iω(D(x) + Pds(x)), (2)

D(x) = ϵ0ϵbE(x), H(x) =
1
µ0

B(x), Pds(x) =←→α 0E(x)δ(z),

(3)

where ϵb is the permittivity of the background medium, and
Pds is the induced polarization in the dipole sheet. The har-
monic time dependence exp(−iωt) of the angular frequency ω
is omitted from the electromagnetic field. Therefore, the elec-
tric field satisfies

∇ × ∇ × E(x) = q2
bE(x) + µ0ω

2 Pds(x), (4)

with qb = (ω/c)
√
ϵb. Using the Green function G of the

Helmholtz equation, the above equation is written as

E(x) = E0(x) + µ0ω
2
∫

d3x′
←→
G (x, x′)Pds(x′), (5)

←→
G (x, x′) = −

←→1 + 1
q2

b

∇ ⊗ ∇
G(x, x′), (6)

(∆ + q2
b)G(x, x′) = δ(3)(x − x′). (7)

The Green function has the Fourier-expansion form given by

G(x, x′) =
∫

d2 k∥
(2π)2 eik∥·(x∥−x′∥)

1
2iγb

eiγb |z−z′ |, (8)

with γb =
√

q2
b − k2

∥ .
By the translational invariance in plane, the total electric

field (incident plus induced fields) is written as

E(x) = Ek(z)eik∥·x∥ , (9)

Ek(z) = E0
k(z) + t±eiγb |z| − 1

ϵ0ϵb
δ(z)ẑ ⊗ ẑ←→α 0Ek(0), (10)

t± = −
←→1 − 1

q2
b

K±b ⊗ K±b

←→̃α 0Ek(0), (11)

←→̃
α 0 =

µ0ω
2

2iγb

←→α 0, (12)

K±b = k∥ ± γbẑ. (13)

The superscript ± of t refers to the sign of z. The second and
third terms in Eq. (10) both stand for the induced field. The
former term is a propagating one, while the latter remains in
the dipole sheet.

We should note that the propagating field is completely
symmetric with respect to z = 0, provided that the out-
of-plane polarizability components vanish. In fact, we have
t+p = t−p and t+s = t−s , where t±p(s) is the p(s) polarization com-
ponent of t±:

t± = t±p p±b + t±s s, (14)

p±b = ±
γb

qb
k̂∥ −

|k∥|
qb

ẑ, s = k̂⊥, (15)

k̂∥ =
(

kx

|k∥|
,

ky

|k∥|
, 0

)
, k⊥ =

(
−

ky

|k∥|
,

kx

|k∥|
, 0

)
. (16)

This implies that the same amount of induced wave is ob-
tained above and below graphene, irrespective of the incident
wave.

Taking account of radiation damping, we introduce the ef-
fective polarizability←→α k as19

←→α k =
←→α 0

(←→
M k

)−1
, (17)

←→
M k =

←→
1 +

←→1 − 1
q2

b

k∥ ⊗ k∥ −
γ2

b

q2
b

ẑ ⊗ ẑ
←→̃α 0, (18)

from which we have
←→α 0Ek(0) =←→α kE0

k(0), (19)

and the optical theorem holds.
The matrix inverse in Eq. (17) has a pole due to the

graphene plasmon polariton. Let us assume the rotational in-
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Fig. 1. (Color online) Schematic illustration of the system under study. The
electron beam incident on the graphene sheet induces the out-of-plane tran-
sition radiation and the in-plane plasmon-polariton waves.

variance of graphene. The polarizability thus satisfies α0
xx =

α0
yy and α0

xy = −α0
yx. The dispersion relation of the graphene

plasmon polariton is given by the vanishing determinant of
the matrix

←→
M k. Therefore, it is the solution of

det
←→
M k = (1 + α̃0

xx)
1 + γ2

b

q2
b

α̃0
xx

 + (
γb

qb
α̃0

xy

)2

= 0. (20)

The graphene plasmon polariton very strongly affects the
light-matter interaction in doped graphene.

2.2 Interaction with electron beam
When an electron beam transmits through graphene, it in-

duces out-of-plane transition radiation. At the same time, the
electron excites in-plane graphene plasmon polaritons. As a
result, the incident electron loses its kinetic energy. Let us
suppose a high-energy electron beam. The energy loss is then
very small compared with the kinetic energy, so that the recoil
of the electron is fairly neglected. A schematic illustration of
the system under study is shown in Fig. 1.

The electric field accompanied by a traveling electron with
charge e and velocity v is written as20

E0(x, t) =
∫ ∞

−∞

dω
2π

e−iωt E0(x;ω), (21)

E0(x;ω) =
∫

d2 k∥
(2π)2 eik∥·x∥E0

k(z;ω), (22)

E0
k(z;ω) =

−iµ0eω
q2

b − K2
v

Pveikzvz, (23)

Pv =

←→1 − 1
q2

b

Kv ⊗ Kv

 v
vz
=
ω

q2
bvz

(
ωϵb

c2 v − Kv

)
, (24)

Kv = (kx, ky, kzv), kzv =
ω − kxvx − kyvy

vz
. (25)

The energy loss −∆E (∆E < 0) of the electron after transmit-
ting through graphene is written as

− ∆E = −e
∫ ∞

−∞
dtv · E(xt, t),

=

∫ ∞

0
dωℏωΓEL(ω), (26)

ΓEL(ω) = − e
πℏω
ℜ

[∫ ∞

−∞
dte−iωtv · E(xt;ω)

]

=

∫
d2 k∥
(2π)2 ΓEL(ω, k∥), (27)

ΓEL(ω, k∥) =
2µ0e2

πℏ
ℜ

 γb

(q2
b − K2

v )2
Pt

v
←→̃
α k Pv

 , (28)

←→̃
α k =

µ0ω
2

2iγb

←→α k, (29)

where ΓEL(ω, k∥) is the momentum-resolved energy-loss
spectrum, and xt = vt is the electron position at time t. Here,
we assume that no Cherenkov loss takes place in the back-
ground medium.21 The momentum change ∆p∥ of the electron
in the direction parallel to graphene is given by

−∆p∥ =
∫ ∞

0
dω

∫
d2 k∥
(2π)2 ℏk∥ΓEL(ω, k∥). (30)

Therefore, ΓEL(ω, k∥) represents the differential probability of
the energy loss ℏω and the momentum transfer ℏk∥.

On the other hand, the transition-radiation energy W (total
radiation energy emitted from graphene) out of plane is given
by

W =
∫ ∞

−∞
dt

∫
dS · E(x, t) × H(x, t)

=

∫ ∞

0
dωℏωΓTR(ω), (31)

ΓTR(ω) =
1
πℏω
ℜ

[∫
dS · E∗(x;ω) × H(x;ω)

]
=

∫
|k∥ |<qb

d2 k∥
(2π)2 ΓTR(ω, k∥), (32)

ΓTR(ω, k∥) =
1
πℏω

γb

µ0ω
(|t+|2 + |t−|2). (33)

Here, the surface integral of the Poynting vector is taken at
z = ±∞, so that all evanescent waves propagating graphene
in plane are omitted. The momentum-resolved transition-
radiation spectrum ΓTR(ω, k∥) is proportional to the differen-
tial cross section of the transition radiation as

∂2W
∂(ℏω)∂Ω

=
ωq2

b cos θ
2(2π)2 ΓTR(ω, k∥), (34)

kx = qb sin θ cos ϕ, ky = qb sin θ sin ϕ, (35)

where Ω = (θ, ϕ) is the solid angle.
Although the Planck’s constant appears in the above ex-

pressions, it is just for a quantum-mechanical interpretation.
All the calculations performed in this paper are fully classical,
provided that the quantum-mechanical polarizability is given.

We can show that, for dissipation-less graphene (her-
mitian ←→α 0), the momentum-resolved energy-loss spectrum
ΓEL(ω, k∥) is a delta function outside the light cone. Inside
the light cone, it is equal to the transition-radiation spectrum
ΓTR(ω, k∥). The delta function stands for the excitation of the
graphene plasmon polariton. Thus,

Γ
pp
EL(ω) =

∫
|k∥ |>qb

d2 k∥
(2π)2 ΓEL(ω, k∥), (36)

namely, the energy-loss spectrum outside the light cone, pro-
vides information up to extent at which the graphene plasmon
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polariton is excited by the electron beam. Similarly,

Γtr
EL(ω) =

∫
|k∥ |<qb

d2 k∥
(2π)2 ΓEL(ω, k∥), (37)

provides how much the electron beam induces transition radi-
ation.

In a normal incident case, ΓEL(ω, k∥) is a function of |k∥| by
rotational invariance. However, in an oblique-incidence case,
ΓEL(ω, k∥) depends on arg(k∥) ≡ ϕk. Important information is
thus found in

Γ
pp
EL(ω, ϕk) =

∫ ∞

qb

dk∥k∥
2π
ΓEL(ω, k∥), (38)

which represents the angular distribution of the graphene plas-
mon polariton at a frequency ω.

To confirm the delta-function dependence, we note that Eq.
(28) can be written as

ΓEL(ω, k∥) =
µ0e2

πℏ

γb

q2
b − K2

v
Pt

v(
←→̃
α k −

←→̃
α †k)Pv, (39)

outside the light cone with a pure imaginary γb. Naively,
←→̃
α k

is shown to be hermite for dissipation-less graphene, so that
ΓEL(ω, k∥) seems to vanish. However, there is an exception at
the pole of

←→̃
α k, which corresponds to the graphene plasmon

polariton. Around the pole, the determinant of
←→
M k is written

as

det
←→
M k ≃ λ(k∥ − kpp

∥ (ω) − iε). (40)

Here, ε is an infinitesimal positive number that explains the
causality (the Sommerfeld radiation condition),22 and k∥ =
kpp
∥ (ω) is the dispersion relation of the graphene plasmon po-

lariton. Therefore, we have

←→̃
α k −

←→̃
α †k =

←→̃
α 0←→C k

2πi
λ
δ(k∥ − kpp

∥ (ω)), (41)

where
←→
C k is the cofactor of

←→
M k. This delta-function pro-

file enables us to almost analytically (the ϕk integration is
still left) evaluate the excitation rate Γpp

EL(ω) of the graphene
plasmon polariton. As for the contribution of the transition-
radiation rate Γtr

EL(ω), we need to perform a numerical inte-
gration over k∥ inside the light cone.

3. Homogeneous Slab
For comparison, we consider an electron beam interacting

with a homogeneous slab. In a dielectric slab, slab guided
modes play a significant role in the interaction. In a metal-
lic slab, the Ritchie plasmon-polariton modes23 dominate the
interaction. In a slab case, a standard approach to solving light
scattering and EELS problems is the layer-by-layer method.24

Although this method is well known, we briefly summarize
the theory of the EELS just for notational convenience.

Suppose a homogeneous slab of permittivity ϵa and thick-
ness d is embedded in an outer medium of permittivity ϵb.
The incident electron from the top induces the transmitted and
reflected waves in the lower and upper regions, respectively.
The total electric field becomes

E(x;ω) =
∫

d2 k∥
(2π)2 eik∥·x∥Ek(z;ω), (43)

Ek(z;ω) =


E0b

k (z;ω) + E+k(z;ω) z > d
2 ,

E0a
k (z;ω) + Eins

k (z;ω) |z| < d
2 ,

E0b
k (z;ω) + E−k(z;ω) z < − d

2 ,

, (44)

E±k(z;ω) = (t±p p±b + t±s s)e±iγbz, (45)

Eins
k (z;ω) = (c+p p+a + c+s s)eiγaz

+ (c−p p−a + c−s s)e−iγaz, (46)

where E0b
k is nothing but Eq. (23), and E0a

k is obtained
simply by replacing ϵb with ϵa in Eq. (23). By impos-
ing the boundary conduction at z = ±d/2, the unknown
coefficients t±p , t

±
s , c
±
p , and c±s are solved as follows.


(
γa

q2
a
− γb

q2
b

)
eiγa

d
2 −

(
γa

q2
a
+
γb

q2
b

)
e−iγa

d
2(

γa

q2
a
+
γb

q2
b

)
e−iγa

d
2 −

(
γa

q2
a
− γb

q2
b

)
eiγa

d
2


(

c+p
c−p

)
=

(
J+p
J−p

)
, (47)

(
(γa − γb) eiγa

d
2 − (γa + γb) e−iγa

d
2

(γa + γb) e−iγa
d
2 − (γa − γb) eiγa

d
2

) (
c+s
c−s

)
=

(
J+s
J−s

)
, (48)

J±p =
iµ0eω

qa

 1
q2

a − K2
v

v · k̂∥
vz
− ω|k∥|

vzq2
a

 − 1
q2

b − K2
v

v · k̂∥
vz
− ω|k∥|

vzq2
b


±γb

q2
b

 1
q2

a − K2
v
− 1

q2
b − K2

v

 |k∥| − kzvv · k̂∥
vz

 e±ikzv
d
2 , (49)

J±s = iµ0eω
 1

q2
a − K2

v
− 1

q2
b − K2

v

 v · k̂⊥
vz

(kzv ∓ γb)e±ikzv
d
2 , (50)

t±p =
qb

γb
e−iγb

d
2

{
±γa

qa
(c+pe±iγa

d
2 − c−pe∓iγa

d
2 )

−iωµ0e
 1
q2

a − K2
v

v · k̂∥
vz
− ω|k∥|

vzq2
a

 − 1
q2

b − K2
v

v · k̂∥
vz
− ω|k∥|

vzq2
b

 e±ikzv
d
2

 , (51)
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t±s = e−iγb
d
2

c+s e±iγa
d
2 + c−s e∓iγa

d
2 − iµ0eω

 1
q2

a − K2
v
− 1

q2
b − K2

v

 v · k̂⊥
vz

e±ikzv
d
2

 . (52)

By using the above solution, the energy-loss and transition-
radiation spectra are obtained as

ΓEL(ω, k∥) = −
e
πℏω
ℜ

v · (t+p p+b + t+s s)
ei(γb−kzv) d

2

i(ω − K+b · v)

− v · (t−p p−b + t−s s)
ei(γb+kzv) d

2

i(ω − K−b · v)

− v · (c+p p+a + c+s s)
ei(γa−kzv) d

2 − e−i(γa−kzv) d
2

i(ω − K+a · v)

− v · (c−p p−a + c−s s)
e−i(γa+kzv) d

2 − ei(γa+kzv) d
2

i(ω − K−a · v)

−iωµ0ed
|v|2
v2

z
− ω2

v2
z q2

a

q2
a − K2

v

 , (53)

ΓTR(ω, k∥) =
1

πℏµ0ω2 γb(|t+p |2 + |t+s |2 + |t−p |2 + |t−s |2). (54)

Here, we assume that the Cherenkov radiation does not take
place outside the slab.

If the slab is dissipation-less, the determinant of the coeffi-
cient matrix Eqs. (47) and (48) can have a real zero at a cer-
tain k∥, giving rise to a pole in c±p , c

±
s as a function of k∥. This

pole corresponds to a guided mode in a dielectric slab and a
Ritchie plasmon polariton mode in a metallic slab. In the lat-
ter case, only the p-polarization is relevant. The pole gives a
delta function in ΓEL(ω, k∥) outside the light cone. Thus, by
evaluating the pole residue, we can obtain an analytic expres-
sion of the excitation efficiency and the angular distribution
of the confined mode concerned.

One may wonder whether there is a possibility of the pole
due to the Cherenkov radiation being inside the slab. How-
ever, this pole is completely canceled in the energy-loss spec-
trum as well as in the transmission and reflection coefficients.

4. Numerical Results and Discussion

In what follows, we consider doped graphene with the local
optical conductivity25

σ(ω) =
e2E f

πℏ2

i
ω + iτ−1 +

ie2

2h
loge

(
2E f − ℏ(ω + iτ−1)
2E f + ℏ(ω + iτ−1)

)
,

(55)

where E f is the Fermi energy measured from the Dirac point
of graphene and τ is the relaxation time.

The first term in Eq. (55) is the intraband contribution,
while the second term is the interband one. At high frequen-
cies, the conductivity saturates as σ(ω) ≃ e2/(4ℏ), which ex-
plains the small optical absorption of 2.3% of graphene. In
the plasmon pole approximation, we assume τ → ∞ and
ℏω < 2E f , so that the conductivity is pure imaginary. The de-
viation in the conductivity from an infinite τ appears strongly
at low frequenciesω < 1/τ. There, the real part of the conduc-
tivity becomes dominating, while in the infinite τ limit the real
part is zero. Therefore, the pole approximation in this region

is not justified. We should point out here that the conductivity
at τ → ∞ scales with the threshold frequency ωc ≡ 2E f /ℏ of
the interband transition. Therefore, from now on, we normal-
ize frequency ω by ωc.

For comparison, we also consider a thin metallic slab of the
Drude permittivity

ϵa(ω) = 1 −
ω2

p

ω(ω + iτ−1)
, (56)

free-standing in vacuum. The slab thickness d is taken to be
0.25λp, where λp(= 2πc/ωp) is the plasma wavelength. The
relaxation time τ is assumed to be infinity for the pole approx-
imation, otherwise it is finite. Again, at τ → ∞, the permit-
tivity scales with ωp, and thus we normalize frequency ω by
ωp.

In the graphene case, the graphene plasmon polariton plays
crucial roles in various optical phenomena. In the metallic
slab case, the Ritchie plasmon polariton has profound impor-
tance. Their dispersion relations at τ→ ∞ are given in Fig. 2.

In doped graphene, the plasmon-polariton dispersion be-
haves like ω ∼

√
αeωcck∥, with αe being the fine structure

constant, so that it has a broad range of the spectrum control-
lable by electron doping. In actual systems, however, the inter-
band transition and the nonlocality in the optical conductivity
at a large k∥ strongly affect the plasmon-polariton dispersion.
Therefore, when we discuss the plasmon polariton in this pa-
per, we concentrate on the limited frequency range shown in
Fig. 2 (a).

In the metallic slab, two plasmon-polariton branches
emerge with opposite parities in the z-direction. The lower
polariton is, to some extent, similar to the graphene plasmon
polariton, while the upper polariton tends to stay at ω = ωp

in the infinitely thin slab limit. The eigenfrequencies of the
plasmon polaritons approach ω = ωp/

√
2 with increasing k∥.

However, at a large k∥ the nonlocality in the permittivity be-
comes important, showing a limitation of the local-response
approximation employed in this paper. We thus restrict our-
selves in the frequency region below 0.706ωp when we dis-
cuss the Ritchie plasmon polariton.

4.1 Momentum-resolved spectra
First, we consider the map of the momentum-resolved

energy-loss and transition-radiation spectra in doped
graphene. The map visualizes various features of doped
graphene intuitively. Such spectral maps of the energy loss
for silicon slabs are found, for instance, in Refs. 26 and 27.

Figure 3 shows the spectral maps for the oblique incidence
of the electron beam with different electron velocities. The
spectra exhibit two marked domains, namely, above and be-
low the interband transition threshold (ω = ωc). The spectra
are rather plain above the threshold, whereas they are rich be-
low the threshold. It is remarkable that the plasmon loss indi-
cated by the bright curve below the threshold dominates the
energy-loss spectrum especially at lower electron velocities.
We also point out that the transition radiation, which can be

5



J. Phys. Soc. Jpn. FULL PAPERS

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

ckx/ωc

0.0

0.5

1.0

1.5

ω
/ω

c 

10-4

10-2

100

102

Γ E
L
(ω

,k
||)

/(
µ 0

e2 c3 /π
- hω

c3 )(a)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

ckx/ωc

0.0

0.5

1.0

1.5

ω
/ω

c 

10-4

10-2

100

102

Γ T
R

(ω
,k

||)
/(

µ 0
e2 c3 /π

- hω
c3 )(b)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

ckx/ωc

0.0

0.5

1.0

1.5

ω
/ω

c 

10-4

10-2

100

102

Γ E
L
(ω

,k
||)

/(
µ 0

e2 c3 /π
- hω

c3 )(c)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

ckx/ωc

0.0

0.5

1.0

1.5

ω
/ω

c 

10-4

10-2

100

102

Γ T
R

(ω
,k

||)
/(

µ 0
e2 c3 /π

- hω
c3 )(d)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

ckx/ωc

0.0

0.5

1.0

1.5

ω
/ω

c 

10-4

10-2

100

102

Γ E
L
(ω

,k
||)

/(
µ 0

e2 c3 /π
- hω

c3 )(e)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

ckx/ωc

0.0

0.5

1.0

1.5

ω
/ω

c 

10-4

10-2

100

102

Γ T
R

(ω
,k

||)
/(

µ 0
e2 c3 /π

- hω
c3 )(f)

 0

 200

 400

 600

 800

 1000

-0.4 -0.2 0.0 0.2 0.4

Γ E
L

/T
R

(ω
,k

||)
/(

µ 0
e2 c3 /π

- hω
c3 )

ckx/ωc

(g)

EL
TR 0.00

0.01

0.02

0.03

0.04

-2 -1  0  1  2

Γ E
L

/T
R

(ω
,k

||)
/(

µ 0
e2 c3 /π

- hω
c3 )

ckx/ωc

(h)
EL

TR

Fig. 3. (Color online) Momentum-resolved energy-loss spectrum ΓEL(ω, k∥) and transition-radiation spectrum ΓTR(ω, k∥) at ky = 0 of doped graphene. The
local-response approximation of the optical conductivity is employed. The Fermi energy E f is assumed to be 0.4 [eV] measured from the Dirac point of
graphene. The relaxation time τ is taken to be 4 × 10−13 [s]. An oblique incidence of θinc = π/4 is assumed. The electron velocity is taken to be v = 0.5c (a,b),
0.9c (c,d), and 0.99c (e,f). Cross-sectional views of these spectra for v = 0.9c at ω/ωc = 0.05 and 1.25 are also plotted in (g) and (h), respectively.
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Fig. 2. (Color online) (a) Dispersion relation of the graphene plasmon
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ie2/2h loge((2E f −ℏω)/(2E f +ℏω)) with 2E f = ℏωc, where ωc is the thresh-
old frequency of the interband transition. (b) Dispersion relation of Ritchie
plasmon polaritons in a thin metallic film with a thickness d = λp/4 and a
Drude permittivity ϵa(ω) = 1 − (ωp/ω)2, where ωp(= 2πc/λp) is the plasma
frequency. The background medium is air (ϵb = 1) in both cases. The light
cone is given by ω = ck∥. The horizontal dashed line in (b) represents the
surface plasmon frequency ω = ωp/

√
2.

found inside the light cone (ω > c|k∥|), increases in its per-
centage of the energy loss, and becomes spectrally wide and
forward (and backward) oriented with increasing electron ve-
locity. The latter property is common in ordinary transition
radiation at the interface between two media with different re-
fractive indices. However, it is not so trivial because we have
only one atomic monolayer.

A spectral dip is found along a straight line in the (kx, ω)
plane. The dip is purely kinetic and is given by ω = c2kx/vx.
In this dip, the factor Pt

v
←→α 0 appearing in Eq. (28) vanishes,

provided vy = ky = 0.
Let us have a close look at the spectra relevant to the

plasmon-polariton excitation. Figures 3(g) and 3(h) show
cross-sectional plots of the spectra at ω/ωc = 0.05 and 1.25,
respectively, for v = 0.9c. At ω/ωc = 0.05, several peaks
are found in the energy-loss spectrum. Among them, the two
peaks found at ckx/ωc ∼ ±0.35 are due to the plasmon-
polariton excitation. The others are due to the transition ra-
diation. Figure 3(g) indicates that, if the plasmon polariton
is relevant in the frequency range concerned, most of the en-
ergy loss is taken away by the plasmon polariton. The tran-
sition radiation gives a rather small contribution to the en-
ergy loss. However, there is a certain region at approximately
kx = 0 in which the momentum-resolved energy loss is domi-
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Fig. 4. (Color online) (a) Excitation efficiencies of the graphene plasmon
polariton at various velocities of the electron beam. The incident angle is
fixed to 45◦. (b) Excitation efficiencies at v = 0.1c for various incident angles.
The plasmon-pole approximation is employed.

nated by the transition radiation. We also find, as in Fig. 3(h),
that, above the interband threshold, most of the energy loss is
caused by the dissipation due to the real part of the conduc-
tivity tensorℜ[σ] ≃ e2/4ℏ.

We should note, however, that, if the dissipation is com-
pletely absent, the momentum-resolved energy-loss spectrum
coincides with that of the transition-radiation spectrum inside
the light cone. Outside the light cone, the former exhibits the
delta-function singularity at the plasmon-polariton dispersion
k∥ = kpp

∥ (ω), otherwise it is zero. The latter vanishes out-
side the light cone. By numerical calculation, we can see that
the transition-radiation spectrum in dissipative systems is not
markedly different from that in dissipation-less systems.

4.2 Plasmon excitation efficiency
Next, we consider the excitation efficiency of the plas-

mon polariton. We employ the plasmon-pole approximation,
in which the dissipation (that is, the real part of the conduc-
tivity) is neglected (τ → ∞ and ℏω < 2E f ). Generally, the
dissipation makes sharp peaks and dips of the energy-loss
spectrum rounder, while their integrals show a small change.
The spectrum itself in off-resonance regions shows a small
change with the dissipation. Therefore, we should note that
the plasmon-pole approximation tends to overestimate possi-
ble spectral peaks.

Figure 4 shows the excitation efficiency of the plasmon po-
lariton by the electron beam of the oblique incidence. Note
that the peak of the excitation efficiency exhibits a red shift
and becomes narrow with increasing velocity of the elec-
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The normal incidence of the electron beam is assumed.

tron beam. Conversely, a slower electron excites the graphene
plasmon polariton in a higher and wider frequency range.
These properties are reasonable because, at high frequencies,
the plasmon-polariton dispersion is far from the light cone,
so that the polariton can be dealt well with the nonretardation
(quasi-static) approximation in which the light velocity c is
taken to be infinity. The electron velocity is then negligible
compared with the light velocity.

As for the incident angle dependence, a highly efficient ex-
citation is achieved at the oblique incidence with a large in-
cident angle. This property is reminiscent of the excitation of
the surface plasmon polariton in the attenuated total-reflection
setup.28 In the setup, an evanescent light is incident through
prism coupling. The electric field accompanied by the elec-
tron beam is also evanescent away from the electron trajec-
tory. As an extreme oblique incidence, properties of the plas-
mon excitation are summarized in Appendix, for the electron
traveling parallel to graphene.

As shown in the previous subsection, the energy loss of the
electron transmitted through graphene is mainly caused by the
excitation of the graphene plasmon polariton. However, at low
frequencies, the plasmon-polariton dispersion curve remains
near the light cone, as shown in Fig. 2(a), so that the result-
ing wave is lightlike. As a consequence, the transition radia-
tion becomes non-negligible there. Figure 5 shows the com-
parison between the plasmon-polariton excitation rate and the
transition-radiation rate for the normal incidence. Note that
the vertical axis is given on the logarithmic scale. Therefore,
for v = 0.1c, the transition-radiation rate is much lower, of or-
der 10−7, than the plasmon-polariton excitation rate atω/ωc =

0.25. Even for v = 0.9c, the transition-radiation rate is two
orders of magnitude lower than the plasmon-polariton exci-
tation rate at the same frequency. Generally, the transition-
radiation rate becomes larger for a faster electron, a smaller
incident angle, and a lower frequency. Therefore, we can see
that the transition-radiation rate of the normally incident elec-
tron beam with v = 0.9c becomes on the same order as the
plasmon-polariton excitation rate at very low frequencies.

Above the frequency ω/ωc = 0.25, the momentum of the
plasmon polariton exceeds ℏck∥/ωc ∼ 10, as shown in Fig.
2(a). If the Fermi energy E f is set at 0.4 [eV], ℏckx reaches 8
[eV], which is in the far-ultraviolet region, so that the local-
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Fig. 6. (Color online) Excitation rate of the Ritchie plasmon polaritons in
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surface plasmon frequency ωp/

√
2 is considered. (a) Velocity dependence

of the excitation rate. The incident angle is fixed to 45◦. (b) Incident angle
dependence. The electron velocity is fixed to v = 0.3c.

response approximation for the conductivity becomes worse.
On the other hand, we can reasonably evaluate the transition-
radiation rate ΓTR(ω) there, because relevant momenta are in-
side the light cone, bounded as k∥ < ω/c.

Figure 5 also shows the transition-radiation rate up to
ω/ωc = 1.5. The sharp dip at ω/ωc ∼ 0.84 in Fig. 5 is due to
the zero of the conductivity in Eq. (55). Therefore, the transi-
tion radiation through doped graphene vanishes. We can also
find a small peak of the transition-radiation rate at the thresh-
old of the interband transition, ω = ωc. This peak grows with
increasing velocity. We will discuss the transition radiation
there in the next subsection.

For comparison, we consider the excitation rate of plas-
mon polaritons in a thin metallic film. Figure 6 shows the
spectrum of the excitation rate for various velocities and in-
cident angles. Here, we restrict ourselves in the frequency
range up to 0.706ωp, which is close to the surface plasmon
frequency ωp/

√
2. Above the frequency bound, the momen-

tum k∥ of the plasmon polariton exceeds 10ωp/c. Since the
plasma frequency is on the order of several electron volts,
the local-response approximation employed in this study be-
comes worse in such a range.

In a metallic slab, the excitation rate of plasmon polaritons
generally increases with increasing frequency toward ωp/

√
2.

We also find spectral fringes due to the interference between
two plasmon polaritons with different parities. The spectral
intensity and fringe become remarkable for a large incident
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angle, particularly at v = 0.3c. Above ωp/
√

2, the excitation
rate vanishes, because there is no plasmon-polariton disper-
sion.

A remarkable contrast to doped graphene is afforded for the
limited tunability of the plasmon-polariton excitation. That
is, no marked peak in the excitation rate is found below
ω = 0.68ωp even if the velocity and incident angle are varied.
This property implies that, in the thin metallic slab, plasmon
polaritons at low frequencies are not efficiently excited by the
electron beam. An efficient excitation is limited only near the
surface plasmon frequencies.

As for the transition radiation of the metallic slab, a sig-
nificant portion of the electron energy loss is taken away by
the transition radiation, particularly at low frequencies. Figure
7 shows a comparison between the excitation rate of the plas-
mon polaritons and the transition-radiation rate. We can find a
crossover between the plasmon-polariton excitation rate and
the transition-radiation rate at ω/ωp ∼ 0.2. Below this fre-
quency, the transition radiation dominates in the energy loss.
The transition-radiation rate exhibits a small peak at the bulk
plasmon frequency ω = ωp. These features are independent
of the incident angle and electron velocity.

4.3 Angular distribution of plasmon polariton and transi-
tion radiation

Finally, we consider the angular distribution of the plasmon
polariton and the transition radiation. Again, the plasmon-
pole approximation is employed.

In the normal-incidence case the angular distribution of
the plasmon polariton is isotropic by the rotational symmetry
with respect to the electron trajectory. Therefore, a selective
excitation of the graphene plasmon polariton at a particular
momentum k∥ is not available. However, if the incident angle
is tilted, the angular distribution is deformed from a circular-
symmetric shape, giving rise to the possible control of the
plasmon-polariton excitation.

Figure 8 shows the angular distribution of the graphene
plasmon polariton excited by electron beams at the peak fre-
quencies in Fig. 4. We can see that, when the incident an-
gle is fixed to 45◦, the angular distribution does not change
markedly with varying velocity. We also find that for a larger
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Fig. 8. (Color online) Angular distribution of the graphene plasmon polari-
ton at the peak frequencies of the plasmon-polariton excitation rate in Fig. 4.
The incident azimuthal angle ϕinc is fixed to 0◦ (tilted in the x-direction). (a)
At the peak frequencies in Fig. 4(a). The incident (polar) angle is fixed to 45◦.
(b) At the peak frequencies in Fig. 4(b). The velocity is fixed to v = 0.1c.

incident angle, the directivity and excitation efficiency of the
plasmon polariton increase. However, even at θinc = 75◦,
the angular distribution still has a rather large deviation of
∆ϕk ∼ ±30◦. A similar property is obtained at the peak fre-
quency of the excitation efficiency for other velocities. There-
fore, the controllability of the momentum of the plasmon po-
lariton is limited.

As for the transition radiation, the spectral peak is found
at the threshold of the interband transition, as shown in Fig.
5. For a normally incident electron beam of v = 0.9c and
0.99c, the angular distribution of the transition radiation at
the threshold is shown in Fig. 9. Here, we plotted the polar-
angle distribution. By the rotational symmetry there is no az-
imuthal angle dependence. The angular distribution exhibits
strong forward- and backward-oriented profiles at ultrarela-
tivistic velocities, which is typical of the transition radiation
for relativistic electron beams. The directivity and intensity in
the forward and backward orientations increase with increas-
ing velocity of the electron beam.

For comparison, we consider the angular distribution of
plasmon polaritons in a thin metallic slab. Figure 10 shows
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Fig. 9. (Color online) Angular distribution of the transition radiation at the
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the angular distribution of two plasmon polaritons at the peak
frequencies in Fig. 6. Since the two plasmon polaritons are
excited, we can consider the angular distribution of each po-
lariton. The angular distributions exhibit nodal structures, in
which there are several k∥ points at given frequencies such
that the plasmon polaritons are not excited. By numerical cal-
culation, we can show that the number of nodes increases with
increasing frequency toward ωp/

√
2. In addition, we also find

that, for a larger incident angle, the directivity and intensity
of the plasmon-polariton excitation increase. For instance, at
θinc = 75◦, the upper polariton mode is dominantly excited
by the electron beam of v = 0.3c. It has broad peaks in the
angular distribution at ϕk ∼ ±22◦. The lower polariton mode
exhibits sharp peaks in the angular distribution at ϕk ≃ 45◦,
although its intensity is lower than that of the upper polariton
mode. In this way, the excitation of the Ritchie plasmon po-
laritons near the surface-plasmon frequency can be controlled
by the electron beam fairly well.

5. Conclusions
We have presented a detailed theoretical analysis of the in-

teraction between an electron beam and doped graphene un-
der the local-response approximation. An electron incident
on doped graphene induces the out-of-plane transition ra-
diation and in-plane plasmon-polariton waves. The rates of
the plasmon-polariton excitation and transition radiation are
quantitatively evaluated and compared with those of a thin
metallic slab. The plasmon polariton in doped graphene has
a controllable spectrum of the

√
k∥-type dispersion relation.

We have observed that there is an appropriate velocity of the
electron beam that very efficiently excites the plasmon polari-
ton of particular frequency in the broad frequency range. In
contrast, for the metallic slab, the efficient excitation of the
plasmon polariton is limited near the surface plasmon fre-
quency ωp/

√
2. A deeply tilted incidence is better for the

excitation of the graphene plasmon polariton. The resulting
angular distribution of the graphene plasmon polariton has a
rather large deviation of ±30◦. We have also observed that the
transition radiation in doped graphene exhibits a small peak
at the interband-transition threshold.
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Fig. 10. (Color online) Angular distribution of the Ritchie plasmon polari-
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Appendix
Here, we present an extreme case of an oblique-incident

electron beam, namely, an electron traveling parallel to
graphene. In this case, no transition radiation emerges, and
the energy loss of the traveling electron is caused only by the
plasmon-polariton excitation and absorption. The energy-loss
rate is proportional to the length of the electron trajectory.
Therefore, it can be arbitrarily large by assuming an appropri-
ately long trajectory. Thus, direct comparison to the transmit-
ted setup of the electron beam through graphene is not avail-
able.

Suppose that an electron is traveling in the x-direction
above a graphene sheet with a distance d. The evanescent
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Fig. A·1. (Color online) Electron energy-loss spectrum for an electron
traveling parallel to doped graphene with dissipation (E f = 0.4 [eV] and
τ = 4×10−13 [s]). The distance between the electron trajectory and graphene
is taken to be d = 0.1×2πc/ωc ∼ 155 [nm], and L is the length of the electron
trajectory.

wave accompanied by the traveling electron is written as

E0(x;ω) =
∫

dky

2π
E0±

k (ω)eiK±b ·x, (A·1)

E0±
k (ω) = −µ0eω

2γb
P±x e∓iγbd, (A·2)

P±x =
←→1 − 1

q2
b

K±b ⊗ K±b

 x̂. (A·3)

Here, in the definition of K±b given in Eq. (13), kx is replaced
with ω/v, with v as the electron velocity. Using the Rayleigh-
scattering formula found in Sect. 2.1, the electron energy-loss
spectrum is given by

ΓEL(ω) =
∫

dky

2π
ΓEL(ω, ky), (A·4)

ΓEL(ω, ky) = −µ0e2L
2πℏ

ℜ
[
(P+x )t←→̃α k P−x

1
γb

e2iγbd
]
, (A·5)

where ΓEL(ω, ky) is the differential probability of energy loss
ℏω and momentum transfer ℏky in the y-direction, and L is the
length of the electron trajectory.

In the dissipation-less limit, ΓEL(ω, ky) becomes the delta

function on the plasmon polariton dispersion
√

(ω/v)2 + k2
y =

kpp
∥ (ω). By solving this equation with respect to ω, we obtain

the modified band structure ω = ωpp;v(ky) as a function of
ky. Thus, we analytically calculate the excitation rate of the
graphene plasmon polariton. Even if the dissipation is taken
into account, the excitation rate can be evaluated easily by
the Sommerfeld integral22 over ky. The result for dissipative

graphene is shown in Fig. A·1. The energy-loss spectrum ex-
hibits a peak at the frequency bottom of the modified band
structure of the plasmon polariton. The bottom is found at
ky = 0, so that its frequency is obtained as a cross point be-
tween the dispersion curve |kx| = kpp

∥ (ω) and kx = ω/v. As we
can see, a slower electron more efficiently excites the plasmon
polariton at higher frequencies. The resulting plasmon polari-
ton at the peak frequency has ky = 0 and thus propagates in
the direction parallel to the traveling electron.
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