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We present a photonic realization of the parity anomaly originally found in the (2+1)-dimensional
Dirac fermion. We first derive an effective Dirac Hamiltonian around the Brillouin zone corner of
triangular-, honeycomb-, and kagome-lattice photonic crystals using group theory. A topological
phase transition by broken space-inversion and time-reversal symmetries is derived analytically
within the effective theory on the honeycomb lattice. The phase transition is closely related to the
Haldane model of the two-dimensional electron system under periodic magnetic flux, which realizes
the parity anomaly in a condensed-matter system. We also derive an effective theory around the
Brillouin zone center, where quadratic degeneracy in momentum space take places. The effective
theory there predicts a similar phenomenon as the parity anomaly. As a result, a topologically
nontrivial phase and a chiral edge state are predicted even for staggered configuration of applied
magnetic flux. A numerical simulation is also presented to confirm the prediction.
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I. INTRODUCTION

The parity anomaly is a kind of quantum anomaly in
which a parity invariance is preserved in classical the-
ory, but is broken in quantum theory.1,2 In the (2+1)-
dimensional Dirac fermion, the parity anomaly emerges
as a generation of the Hall current under vanishing mag-
netic flux.3 Its contribution to the Hall conductance is
sgn(m)× e2/(2h), where m is the Dirac mass. Since the
Dirac mass term breaks both the parity and the time-
reversal symmetry (TRS), these symmetries are expected
to be recovered in the limit m → 0. Nevertheless, the
Hall conductance, which is odd under the parity and the
time reversal, becomes nonzero in the limit. Under gen-
eral assumptions, however, the Hall conductance is quan-
tized as an integer multiple of e2/h.4 This integer is actu-
ally the Chern number C of the first Brillouin zone (BZ)
for lattice systems and is topologically invariant.5 There-
fore, the Hall conductance due to the parity anomaly is
just one half of the unit, so that the half-integer con-
tribution of the Dirac fermion is usually hidden in real
systems.
In 1988 Haldane showed that it is possible to duplicate

the contribution, so that the parity anomaly can be man-
ifest in condensed matter systems.6 He studied a tight-
binding model on the honeycomb lattice under a periodic
magnetic flux with zero average per unit cell. The result-
ing band structure exhibits massive Dirac spectra at each
corner (named either the K or K’ point) of the first BZ.
Therefore, the effective theory near the Fermi level ly-
ing in the mass gap is described by two Dirac fermions
around the K and K’ points. The physical origin of the
Dirac mass is the broken space-inversion symmetry (SIS)
and the broken TRS. The interplay between the two bro-
ken symmetries results in a nontrivial topological phase
diagram of the Haldane model.
It seems that the parity anomaly is a quantum ef-

fect and that no classical counterpart exists. However,
this is not true. The underlying physics of the parity
anomaly is that the Dirac fermion has the Berry phase

of ±π for a closed loop around the zero momentum in the
limit of m → 0.7 Note that the Chern number roughly
corresponds to the Berry phase divided by 2π. The
Berry phase emerges in a variety of waves including the
Schrödinger (de Brogie) wave,8 light wave,9,10 acoustic
wave,11 spin wave,12 and so on. Therefore, if the Dirac-
type spectrum emerges in these waves, it is possible to
exhibit a similar phenomenon as the parity anomaly. In
fact, Haldane and Raghu showed that a triangular-lattice
photonic crystal (PhC) with the Dirac spectrum exhibits
the nonzero Chern number by a TRS breaking.13 Later,
this idea is generalized to a square-lattice PhC with
quadratic degeneracy, where the nonzero Chern num-
ber also emerges by a TRS breaking.14,15 Other types of
PhC and photonic lattices made of photorefractive crys-
tals can also have Dirac spectra,16,17 suggesting that an
optical analog of the parity anomaly also works.

For various applications such as nonreciprocal trans-
port, it is important to control the topology. In the orig-
inal Haldane model, the TRS- and SIS-breaking param-
eters give rise to this controllability. By changing one of
the parameters, two bands touch and separate, resulting
in the abrupt change of the Chern number. Inspired by
this work, the author and his collaborator showed nu-
merically that the Dirac “masses” around K and K’ are
controllable in honeycomb-lattice PhCs by the magneto-
optical effect (TRS breaking) and the refractive-index
contrast between the two sublattices (SIS breaking).18

A similar idea was explored for anisotropic triangular-
lattice PhCs.19 The phase diagram in the two-parameter
space of the broken symmetries exhibits a topological
phase transition as in the Haldane model. However, the
phase diagram is derived only numerically, and its theo-
retical foundation was still lacking.

Furthermore, effects of broken symmetries are still un-
clear around the Γ point of the honeycomb lattice, as well
as for the other related lattices such as the kagome lattice.
The band topology is not simply determined by some
properties around the K and K’ point. The Γ point also
can affect the topology. Therefore, a detailed analysis of
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the broken symmetries around the Γ point is necessary
to describe the topological phase transition. From the
viewpoint of spatial symmetry, triangular, honeycomb,
and kagome lattices are categorized to the same class
that can have the C6v point group. Therefore, a unified
description is available in these lattices. The phase space
becomes richer in this order, and a nontrivial topology
in the honeycomb lattice can appear in a more complex
manner in the kagome lattice. Thus, an analysis of one of
these triangular-like lattices is helpful to study the other
lattices.

In this paper we present a detailed theoretical analy-
sis of the topological phase transition in triangular-like
PhCs. The analysis is based on the effective Hamiltoni-
ans with the aid of group theory. We first consider unper-
turbed PhCs that have the C6v point group. These in-
clude triangular-, honeycomb-, and kagome-lattice PhCs
of identical cylinders. This point group allows double de-
generacy in the energy levels at the Γ, K, and K’ points
of the first BZ. Then, we take account of the k ·p pertur-
bation and the perturbation of broken symmetries. The
point group symmetry of the unperturbed system deter-
mines the possible form of the effective Hamiltonian for
the perturbed system. In particular, the Dirac Hamilto-
nian is derived for the degenerate modes at the K and
K’ points. This Hamiltonian is closely related to that
of the Haldane model, and exhibits a nontrivial phase
diagram. As for the Γ point, the effective Hamiltonian
that is quadratic in momentum is derived. The Hamilto-
nian predicts a topologically nontrivial phase and a chiral
edge state even for a staggered configuration of applied
magnetic flux. Such a phase is forbidden in the effective
theory around K and K’, and is derived for the first time
in photonic system. A direct evidence of the nontrivial
topology is also presented by numerical simulation.

This paper is organized as follows. In Sec. II we de-
rive the effective Dirac Hamiltonian around the K and K’
points, and the analytic phase diagram is obtained. The
results are compared with the numerical phase diagram
that was obtained previously. Section III is devoted to
presenting the effective theory around the Γ point. A
nontrivial topology in a staggered configuration of the
applied magnetic flux is predicted. In Sec. IV the non-
trivial topology and a chiral edge state are demonstrated
by numerical simulation. The results agree with the the-
oretical prediction. Finally, our summary and discussion
are given.

II. EFFECTIVE HAMILTONIAN AROUND K
AND K’

Let us formulate the effective Dirac Hamiltonian
around the K and K’ points. The Maxwell equation for
tensor permittivity ϵ↔ and permeability µ↔ is given by

∇× [ξ
↔
(x)∇×E(x)] =

ω2

c2
ϵ↔(x)E(x), (1)
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FIG. 1. (Color online) The triangular-like photonic crystals
composed of circular cylinders. The hexagon is a unit cell of
the lattices.

∇× [η↔(x)∇×H(x)] =
ω2

c2
µ↔(x)H(x). (2)

Here, tensors ξ
↔

and η↔ are the inverse permeability and
the inverse permittivity, respectively. In the following,
we assume a rotationally symmetric form with respect to
the z axis for these tensors:

θ
↔

=

 θxx θxy 0
−θxy θxx 0
0 0 θz

 (θ = ϵ, µ, η, ξ). (3)

We also assume that they are dispersion free. In a two-
dimensional PhC of circular cylinders, the momentum
kz parallel to the cylindrical axis (z axis) is conserved.
Here, we restrict kz = 0. The system is decoupled into
the transverse-electric (TE) and the transverse-magnetic
(TM) polarizations because of the inversion symmetry
z → −z.

Let us focus on the TM polarization. The TE polar-
ization can be dealt with in a parallel way. In terms of
the plane-wave expansion, the z component of Eq. (1) is
written as∑

g′

Hgg′eg′ =
ω2

c2

∑
g′

Kgg′eg′ , (4)

Hgg′ = ξg−g′(k + g) · (k + g′)

+iζg−g′ [(k + g)× (k + g′)]z, (5)

Kgg′ = (ϵz)g−g′ , (6)

Ez(x) =
∑
g

ei(k+g)·xeg, (7)

θ(x) =
∑
g

eig·xθg (θ = ξ, ζ, ϵz). (8)

Here, ξxx ≡ ξ, ξxy ≡ iζ, k is the two-dimensional (2d)
Bloch momentum, and g is a 2d reciprocal lattice vec-
tor. A schematic illustration of the system under study
is shown in Fig. 1. The first BZ is depicted in Fig.
2. As the unperturbed system we assume A = B
for the honeycomb lattice and A = B = C for the
kagome lattice (see Fig. 1). We also assume the off-
diagonal component θxy of the permittivity and the per-
meability tensors is zero. The systems thus have the
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FIG. 2. The first Brillouin zone of the triangular-like lattices.
Points of high symmetry are indicated.

C6v(≡ {1, 2C6, 2C3, C2, 3σx, 3σy}) point-group symme-
try. Here, Cn stands for 2π/n rotation, and σx(y) is the
parity transformation x(y) → −x(y). Accordingly, the
modes at the K and K’ points are classified by the irre-
ducible representations of C3v(≡ {1, 2C3, 3σy}), which is
the k group there. Let us pick up a doubly-degenerate E
mode of C3v at the K point of the unperturbed system.
It satisfies∑

g′

H
(0)
gg′e

(p)
g′ =

ω2
0

c2

∑
g′

K
(0)
gg′e

(p)
g (p = 1, 2), (9)

H
(0)
gg′ = ξavg−g′(kK + g) · (kK + g′), (10)

K
(0)
gg′ = (ϵavz )g−g′ . (11)

Here, ξav and ϵavz are the C6v symmetric part of the cor-
responding functions, and are defined latter. The two

eigenstates e
(p)
g (p = 1, 2) form the E representation of

C3v and thus satisfy

e
(p)
G−1(g−g0)

=
∑
q=1,2

e(q)g Dqp(G). (12)

Here, G is an element of C3v with GkK = kK + g0, and
D(G) is a unitary representation of the E mode. Without
the loss of generality, we put kK = (4π/(3a), 0), where a
is the lattice constant. We normalize the basis as∑

gg′

(e(p)g )∗K
(0)
gg′e

(q)
g′ = δpq. (13)

A positive definite K(0) matrix is assumed.
From now on, we focus on a honeycomb lattice PhC

that consists of A and B triangular sublattices of the cir-
cular cylinders, embedded in a background medium of
diagonal permeability µb and z component of permittiv-
ity ϵzb. The radii of the A and B cylinders are taken to
be the same. The triangular and kagome lattices are dis-
cussed in Appendices. We consider the k ·p perturbation
and the perturbation of broken symmetries from the E
mode at K. Thus, the expansion parameters are 1) the
deviation of the k vector from the K point,

δk ≡ k − kK, (14)

2) the deviation of ξ and ϵz from A = B,

δθ ≡ 1

2
(θA − θB) (θ = ξ, ϵz), (15)

and 3) the magnitude of the magneto-optical effect of
the A and B cylinders, ζA and ζB. Thus, ξ(x) and ϵz(x)
(represented by θ(x)) are given by

θ(x) = θb + (θA − θb)S
A(x) + (θB − θb)S

B(x)

= θav(x) + δθ(SA(x)− SB(x)), (16)

θav(x) ≡ θb + (θa − θb)(S
A(x) + SB(x)), (17)

being θa ≡ (θA + θB)/2. Function ζ(x) is given by

ζ(x) = ζAS
A(x) + ζBS

B(x). (18)

Here, SA(B)(x) is a periodic function that is zero inside
the A(B) cylinder and zero otherwise.

The degenerate-perturbation theory up to the first or-
der in these expansion parameters results in the diago-
nalization of the following effective Hamiltonian:

Hpq = H(k)
pq +H(ξ)

pq +H(ϵ)
pq +H(ζ)

pq , (19)

H(β)
pq =

∑
gg′

(e(p)g )∗H
(β)
gg′e

(q)
g′ , (20)

H
(k)
gg′ = ξavg−g′δk · (2kK + g + g′), (21)

H
(ξ)
gg′ = δξ(SA

g−g′ − SB
g−g′)(kK + g) · (kK + g′), (22)

H
(ϵ)
gg′ = −ω2

0

c2
δϵz(S

A
g−g′ − SB

g−g′), (23)

H
(ζ)
gg′ = i(ζAS

A
g−g′ + ζBS

B
g−g′)[(kK + g)× (kK + g′)]z.(24)

Here, H(k) is the k · p perturbation, H(ξ) and H(ϵ) are
the perturbation of the broken SIS, and H(ζ) is the per-

turbation of the broken TRS. Factor S
A(B)
g is the Fourier

transform of SA(B)(x). The diagonalization problem now
becomes ∑

q=1,2

Hpqcq = Ecp, (25)

eg =
∑
p=1,2

cpe
(p)
g , (26)

ω2

c2
=

ω2
0

c2
+ E . (27)

Using the point group symmetry of C3v, we can show
that

H(k)(δk) = D†(G)H(k)(Gδk)D(G) (G ∈ C3v), (28)

H(β) = D†(C3)H(β)D(C3) (β = ξ, ϵ, ζ), (29)

H(β) = −D†(σy)H(β)D(σy) (β = ξ, ϵ). (30)

As for H(ζ), we divide it into ζAH(ζA) + ζBH(ζB). We
can easily show that

H(ζA) = −D†(σy)H(ζB)D(σy). (31)

By employing the unitary representation for D(G)
given in Appendix C, we obtain

H(k) = λk(σ3δkx − σ1δky), (32)

H(ξ) = λξδξσ2, (33)

H(ϵ) = λϵδϵzσ2, (34)

H(ζ) = λ+
ζ (ζA + ζB)σ2 + λ−

ζ (ζA − ζB)1̂, (35)
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where σi(i = 1, 2, 3) is the Pauli matrix, and 1̂ is the 2
by 2 unit matrix. Summing up all the terms, we have the
following effective Hamiltonian around K:

HK = λk(σ3δkx − σ1δky) +MKσ2 + λ−
ζ (ζA − ζB)1̂,(36)

MK = λξδξ + λϵδϵz + λ+
ζ (ζA + ζB). (37)

This is a Hamiltonian of the massive Dirac fermion. The
eigenvalue of the effective Hamiltonian is thus

EK = λ−
ζ (ζA − ζB)±

√
λ2
k|δk|2 +M2

K. (38)

Next, let us consider the K’ point. The K and K’ points
are related by the inversion of the k vector. By using the
inversion transformation, we can show

H(β)
K′ = −H(β)

K (β = k, ξ, ϵ), (39)

H(ζ)
K′ = λ+

ζ (ζA + ζB)σ2 − λ−
ζ (ζA − ζB)1̂. (40)

Therefore, the effective Dirac Hamiltonian around K’ be-
comes

HK′ = −λk(σ3δkx − σ1δky) +MK′σ2 − λ−
ζ (ζA − ζB)1̂,(41)

MK′ = −λξδξ − λϵδϵz + λ+
ζ (ζA + ζB). (42)

The eigenvalue becomes

EK′ = −λ−
ζ (ζA − ζB)±

√
λ2
k|δk|2 +M2

K′ . (43)

The minus sign of the first term in Eq. (41) is absorbed in
the redefinition of δk. Compared to the effective Hamil-
tonian around K, the energy shifts in an opposite way
and the mass term is different.
A naive evaluation of the Chern number gives the sum

of the contribution of two Dirac photons around the K
and K’ points.31 At each K and K’, there emerges the
parity anomaly. Therefore, we obtain

C = ±1

2
(sgn(MK) + sgn(MK′)), (44)

which has an integer, either 0 or ±1. Let us put δξ =
0 and ζA = ζB = ζ. Then, the two-parameter space
spanned by δϵz and ζ has the phase diagram of Fig. 3,
regarding the Chern number. At the phase boundary
either MK or MK′ is zero.
Some comments are needed on the above results. First,

the Dirac mass changes its sign depending on the magni-
tudes of δξ, δϵz, ζA, and ζB . Second, if a staggered mag-
netic flux is applied for the A and B cylinders, namely
ζA = −ζB , it does not affect the Dirac mass, but shifts
the energy. In this case, we have MK = −MK′ , resulting
in a cancellation of the parity anomaly between K and K’.
The Chern number thus vanishes. Therefore, the stag-
gered configuration of the applied magnetic flux does not
permit the nontrivial topology within the effective the-
ory. This result is consistent with the fact that in the
staggered configuration the C3v symmetry is preserved if
δξ = δϵz = 0. Third, the above derivation of the effec-
tive Dirac Hamiltonian can be easily extended to other

- 0 +

δε
z

-

0

+

ζ

C=1,-1

C=-1,1

C=0 C=0

M
K’

=0 M
K

=0

FIG. 3. (Color online) The phase diagram spanned by δϵz
(the degree of the broken space-inversion symmetry) and ζ(≡
ζA = ζB) (the degree of the broken time-reversal symmetry)
for the honeycomb-lattice photonic crystal.

systems. The key equations are the symmetry properties
given in Eqs. (28)–(31), from which the Dirac Hamil-
tonian is analytically derived. The derivation shows a
striking contrast to that in the tight-binding model of
graphene.21 In the latter system the Dirac Hamiltonian
is derived from the tight-binding one simply by the Tay-
lor expansion on the pseudo-spin basis.

Previously, the author and his collaborator studied nu-
merically a topological phase transition in the TM polar-
ization of a honeycomb lattice PhC.18 There, we focused
on the lowest (in frequency) Dirac point at K and K’ as
the unperturbed system. By numerical diagonalization of

the unperturbed system, we can obtain eigenvector e
(p)
g

at the degenerate mode. The parameters of the effective
Dirac Hamiltonian are then available by Eqs. (32-35).
To examine this Hamiltonian, we compare the shift of
the eigenfrequencies both in the effective theory and in
numerical diagonalization of the perturbed system. The
results are shown in Fig. 4. We can see a nice agree-
ment of the results if the perturbation is small enough.
However, it exhibits a substantial difference for large per-
turbation. Thus, the gap opening and closing in a small
perturbation range, and the resulting topology change
are correctly described by the effective Hamiltonian. Ac-
tually, the parameters of the effective Hamiltonian shown
in Fig. 4 reproduce the topological phase diagram of Ref.
18 fairly well.

III. EFFECTIVE HAMILTONIAN AROUND Γ

Next, we consider another source of topological phase
transition. That is, the Γ point. Concerning the degen-
eracy there, the honeycomb lattice shows a remarkable
contrast to the triangular and kagome lattices. In the
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FIG. 4. Comparison of the eigenfrequency shift of a doubly degenerate mode at the K point in a honeycomb-lattice photonic
crystal. The unperturbed system consists of identical circular cylinders with radius 0.2a, permittivity ϵza = 12, and diagonal
permeability µxx = 1, embedded in air. The TM polarization is assumed. Solid line stands for the results of the effective theory
with the parameters taken from the unperturbed eigenvector through Eqs. (32)–(35). Dot represents the results of numerical
diagonalization of the Maxwell equation. In the top-left panel δk is directed from K to Γ.

honeycomb lattice, the degeneracy at the Γ point is not
lifted by the perturbation of the broken SIS, A ̸= B.
In terms of group theory, this statement corresponds to
the fact that the E1 and E2 representations of C6v are
compatible with the E representation of C3v, which is
the point group of the honeycomb lattice with A ̸= B.
On the other hand, in the triangular and kagome lat-
tices, the symmetry-breaking perturbation immediately
lifts the degeneracy. In this section we focus on the hon-
eycomb lattice and regard the unperturbed system as
that having the C3v(≡ {1, 2C3, 3σx}) point group. The
remaining perturbations are that of k · p and that of the
TRS breaking. We should note that the C3v symmetry
here is different from the C3v symmetry of the k group at
K and K’ discussed in Sec. II. The latter symmetry does
not include σx, but includes σy. The effective Hamilto-
nians of the triangular and kagome lattices are given in
the appendices.

Since the Γ point is the time-reversal invariant k point,
we need to consider this symmetry as well as C3v. The
TRS prohibits the Dirac-type Hamiltonian, which is lin-
ear in k. To see this property, let us consider the first-
order k · p perturbation for a degenerate E mode. The
relevant Hamiltonian is given by

H(k)
pq =

∑
gg′

(e(p)g )∗ξg−g′k · (g + g′)e
(q)
g′ . (45)

Now, e
(p)
g (p = 1, 2) is the eigenvectors of the E mode at

the Γ point. The symmetry property of e
(p)
g becomes

e
(p)
G−1g =

∑
q=1,2

e(q)g Dqp(G). (46)

Therefore, the first-order Hamiltonian satisfies

H(k)
pq (k) =

∑
p′q′

[D†(G)]pp′H(k)
p′q′(Gk)[D(G)]q′q, (47)

for G ∈ C3v. The above equation results in

H(k)
pq = λk[kxσ1 + kyσ3]pq, (48)

using the representation given in Appendix C. Besides,
the TRS of the unperturbed system implies

(e
(p)
−g)

∗ =
∑
q=1,2

e(q)g Uqp, (49)

with U†U = 1. The compatibility between the symmetry
operation Eq. (46) and the TRS relation Eq. (49) yields
D(G)U = UD∗(G). Since the representation matrix can
be real, the unitary matrix U commutes with D(G) for
any G. By Schur’s lemma, matrix U has to be the unit
matrix times a phase factor.22 As a result, the TRS of the

unperturbed system yields (H(k)
pq )∗ = −H(k)

pq . Therefore,

we obtain λk = 0; i.e., H(k)
pq = 0.
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Accordingly, we need to employ the second-order k ·
p perturbation as in the Luttinger-Kohn model.23 The
effective Hamiltonian of k · p now becomes

H(k2)
pq = |k|2

∑
gg′

(e(p)g )∗ξg−g′e
(q)
g′

+
∑

n̸=p,q

c2

ω2
0 − ω2

n

H(k)
pn H(k)

nq . (50)

Here, index n refers to the eigenstates other than the de-
generate modes concerned. By symmetry consideration,
we have

H(k2)
pq (k) =

∑
p′q′

[D†(G)]pp′H(k2)
p′q′ (Gk)[D(G)]q′q. (51)

From the above constraint we obtain the possible form
of the effective Hamiltonian as

H(k2) = λ
(1)
k2 |k|21̂ + λ

(2)
k2 (σ3(k

2
x − k2y) + 2σ1kxky).(52)

The above equation is obtained either by expanding as

H(k2) = H(xx)k2x + H(yy)k2y + H(xy)kxky and applying
Eq. (51) or by deducing the possible forms of the matrix

elements H(k)
pn with intermediate states n being classified

according to the irreducible representations of C3v. For
instance, intermediate A1 and A2 modes give rise to the
terms proportional to(

k2x kxky
kxky k2y

)
and

(
k2y −kxky

−kxky k2x

)
, (53)

respectively. A linear combination of these two terms is
written as Eq. (52).

Next, let us consider the first-order perturbation of the
TRS breaking. The relevant Hamiltonian is written as

H(ζ) = ζAH(ζA) + ζBH(ζB), (54)

H(ζα) =
∑
gg′

(e(p)g )∗iSα
g−g′(g × g′)ze

(q)
g′ (α = A,B).(55)

The spatial symmetry under C3v results in

H(ζα) = D†(C3)H(ζα)D(C3), (56)

H(ζα) = −D†(σx)H(ζα)D(σx). (57)

We obtain the following form of H(ζ),

H(ζ) = Λζσ2, (58)

Λζ = λA
ζ ζA + λB

ζ ζB. (59)

This form is consistent with the TRS of the unperturbed
system: (H(ζ))∗ = −H(ζ). We should note that if A =
B in the unperturbed system, λζA = λζB is derived.
The other terms up to the second order in the expansion
parameters k, ζA, and ζB in the Lödwin perturbation
scheme are given by

H(kζ)
pq =

∑
gg′

(e(p)g )∗iζg−g′(k × (g′ − g))ze
(q)
g′

+
∑

n̸=p,q

c2

ω2
0 − ω2

n

(H(k)
pn H(ζ)

nq +H(ζ)
pnH(k)

nq ), (60)

H(ζ2)
pq =

∑
n̸=p,q

c2

ω2
0 − ω2

n

H(ζ)
pnH(ζ)

nq . (61)

By symmetry consideration, we obtain

H(kζ) = Λkζ(kxσ3 − kyσ1), (62)

H(ζ2) = Λζ2 1̂, (63)

Λkζ = λA
kζζA + λB

kζζB , (64)

Λζ2 = λA
ζ2ζ2A + λB

ζ2ζ2B + λAB
ζ2 ζAζB . (65)

Summing up all the terms, the effective Hamiltonian
around Γ becomes

HΓ = 1̂
(
λ
(1)
k2 |k|2 + Λζ2

)
+ σ2Λζ

+σ3

(
λ
(2)
k2 (k

2
x − k2y) + Λkζkx

)
+σ1

(
λ
(2)
k2 2kxky − Λkζky

)
, (66)

and the energy spectrum becomes

EΓ = λ
(1)
k2 |k|2 + Λζ2 ±

√(
λ
(2)
k2

)2
|k|4 + Λ2

kζ |k|2 + 2λ
(2)
k2 Λkζkx(k2x − 3k2y) + Λ2

ζ . (67)

Therefore, in this approximation, the band dispersion is
no longer isotropic in momentum space, but is three-fold
rotationally symmetric. We can easily check that fac-
tor kx(k

2
x − 3k2y) is invariant under C3. This three-fold

symmetry is a direct consequence of the point group in
the perturbed system, which consists of {1, C3, C

2
3}. The

bands are gapped with gap width 2|Λζ | at the zero mo-
mentum. In this case the Berry phase of the two bands
for a circular loop around the zero momentum is shown to

be 2πsgn(Λζ), provided |Λζ |, |Λkζ |k0 ≪ |λ(2)
k2 |k20.15 Here,

k0 is the circle radius in the momentum space. A similar
Berry phase is obtained in bilayer graphene.24 This for-
mula explains a topological phase transition in a certain
honeycomb-lattice PhC.

Suppose that two photonic bands are touched quadrat-
ically only at the Γ point in the unperturbed system.
When the TRS is broken in the perturbed system, the
gap opens. At the same time, the two bands acquire the
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nonzero Chern numbers as

C = ±sgn(Λζ), (68)

in a naive evaluation. Note that the Berry phase di-
vided by 2π corresponds to the Chern number. We
should recall that Λζ corresponds to the magneto-optical
coupling. The above formula indicates that even if the
magneto-optical coupling, which breaks both the parity
and the TRS, is almost vanishing, the Chern number is
still nonzero. This statement is analogous to the parity
anomaly of the 2+1-dimensional Dirac fermion, although
the band dispersion is quadratic.
An interesting remark is that even in the staggered

configuration of the magneto-optical effect, i.e., ζA =
−ζB, it is possible to exhibits the nontrivial topology.
This provides a striking contrast to the effective theory
around the K and K’ points. There, the staggered config-
uration just shifts the energy, but the mass gap does not
open. As a result, the topology change is prohibited. In
the next section, we confirm numerically that the topol-
ogy change takes place in the staggered configuration.

IV. CHIRAL EDGE STATES UNDER A
STAGGERED MAGNETIC FIELD

In this section we present numerical evidences of the
nontrivial topology in a staggered configuration of the
magneto-optical effect. Let us consider the honeycomb-
lattice PhC composed of magneto-optical cylinders. The
TM polarization is considered here. In the TM polar-
ization the magneto-optical effect emerges through the
off-diagonal part of the permeability tensor. In a sim-
ple spin model of ferrimagnetic materials,25 the perme-
ability tensor at frequencies ω ≫ ω0, ωm behaves as
µxx = µyy ≃ 1 and µxy = −µyx ≃ −iωm/ω. Here, ω0 and
ωm are the Larmor and the saturation-magnetization fre-
quencies, respectively. Since ωm is typically in the GHz
range, we consider (sub)THz frequency regions and put
ωm/ω = ±0.01 for simplicity. As the SIS breaking, we
assume the permittivity contrast between A and B cylin-
ders as ϵzA = 14 and ϵzB = 10. The radii of the A and
B cylinders are kept fixed as rA = rB = 0.2a, where a is
the lattice constant (period of each sublattice).
The photonic band structure of the honeycomb-lattice

PhC is shown in Fig. 5. We point out that in the
unperturbed system the fifth and the sixth bands are
in contact solely at the Γ point, and that they are
well separated from the other bands. By introducing
the magneto-optical effect in a staggered configuration
ζA = −ζB ≃ −0.01, the two bands separate a bit as
shown in the right panel. We can check that the gap
width is proportional to |ζA| = |ζB|.32
According to the effective theory, the gap opening is

accompanied by the topology change. As a result, the
chiral edge state should emerge by the so-called bulk-edge
correspondence.27 To verify this statement, we study the
edge states in the system. The edge states relevant to

Γ M K Γ M’K’ Γ0

0.2

0.4

0.6

0.8

1

ω
a/

2π
c

Γ M K Γ M’K’ Γ0.6

0.61

0.62

0.63

FIG. 5. (Color online) The photonic band structure of the
TM polarization in the honeycomb-lattice photonic crystal
composed of A and B cylinders embedded in air. The per-
mittivity of the A and B cylinders are 14 and 10, respectively.
The radius of the cylinders is kept fixed as to be 0.2a, where a
is the lattice constant of A and B sublattices. Left panel: The
photonic band structure of the system with the time-reversal
symmetry. The permeability tensor of the A and B cylinders
is set to be unity. Right panel: Enlarged view of the fifth and
the sixth bands for the system with the time-reversal sym-
metry (black curve) and the system without the time-reversal
symmetry (red curve). In the latter system, the permeability
tensor is taken to be µxy = −µyx = 0.01i for the A cylinders,
and µxy = −µyx = −0.01i for the B cylinders (staggered
configuration). The remaining diagonal components are 1.

the gap lie inside the light cone (ω > c|k∥|), so that
it leaks from the PhC by coupling with the radiation
modes of continuous spectrum. Although such a leaky
edge state with complex eigenfrequencies can be shown
to exist numerically, we restrict ourselves to a finite-width
PhC sandwiched by metal. In such a case the edge state
is truly guided and has real eigenfrequencies.

Let us consider a stripe-shaped PhC of the honeycomb
lattice sandwiched by a metal. Metals at THz frequencies
can be well approximated by the perfect electric conduc-
tor. A schematic illustration of the PhC stripe is shown
in Fig. 6. Figure 7 shows the dispersion relation of the
edge states localized in zigzag and armchair edges of the
honeycomb-lattice PhC without the TRS.

Since the PhC has a stripe shape, two types of the
edge states, localized in upper and lower edges, can exist
in the pseudo-gap (i.e., k-dependent gap). In both the
types, the dispersion curves of the edge states traverse the
pseudo-gap and terminate at the different bands (taking
into account that the periodicity of the parallel momen-
tum k∥). These properties are inherent in the relevant
bulk bands with a nontrivial topology by the bulk-edge
correspondence. Let us have a close look at the omnidi-
rectional gap region (0.6155 < ωa/(2πc) < 0.617). The
zigzag edge there support one upper-edge state (indicated
by c in Fig. 7) and three lower-edge states (indicated by
a, b, and d). The upper-edge state has a negative group
velocity and there is no other counter-propagating edge
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FIG. 6. (Color online) A schematic illustration of the
photonic-crystal stripe under consideration. The case of the
zigzag edge is shown. The photonic crystal has infinite extent
in the x direction and has 16-layer thickness in the y direc-
tion, sandwiched by the perfect electric conductor (PEC). Red
(green) circles stand for the A(B) cylinders.

-0.4 -0.2 0 0.2 0.4
k

||
a/2π 

0.6

0.61

0.62

0.63

ω
a/

2π
c

zigzag

-0.2 -0.1 0 0.1 0.2
k

||
a/2π

armchair

a b
c

d

FIG. 7. (Color online) The dispersion relation of the edge
states in the finite-thick (16 layers) photonic crystal sand-
wiched by the perfect electric conductor. The edge states
localized in the upper (lower) edge are represented by red
(blue) curve. The projected band structure is also plotted.
The shaded region corresponds to the bulk-band region, and
the blank region is the pseudo gap. The honeycomb-lattice
photonic crystal without the time-reversal symmetry is as-
sumed and the same physical parameters as in the right panel
of Fig. 5 were used. Symbol k∥ refers to the Bloch momentum
parallel to the edges.

state localized in the upper edge. Such an edge state is
called chiral (one-way) and is robust against disorder. As
for the lower edge, states b and d have positive group ve-
locities, and state a has a negative one. Thus, there is an
excess of the positively-propagating edge states. If disor-
der is introduced in the system, the three states mix with
each other. However, the excess gives rise to a perfectly
conducting channel as in graphene ribbons.28

The electric field intensity |Ez|2 of the edge state at

PEC

-1  0  1

x/a

 11

 12

 13

 14

y/
a

 0

 0.2

 0.4

 0.6

 0.8

 1

FIG. 8. (Color online) The electric field intensity |Ez|2 of the
zigzag edge state at c (k∥a/2π = −0.01) in Fig. 7. The edge
state is localized in the upper zigzag edge. Red (green) circle
stands for the A(B) cylinders. The intensity is normalized by
the maximum intensity.

c is plotted in Fig. 8. We can see the electric field
is localized almost in the B cylinders of the boundary
layer. A node is clearly visible inside the B cylinder,
suggesting that the p-wave Mie resonance of the B cylin-
der affects strongly the edge state. In fact the nearest (in
frequency) resonance can be found at ωa/(2πc) = 0.5734
for the isolated B cylinders with µ↔ = 1. Its full width at
half maximum covers the edge-state frequency. The next
nearest is at ωa/(2πc) = 0.4883 for the isolated A cylin-
ders with µ↔ = 1. The small off-diagonal components of
µxy = −µyx = ±0.01i change the resonance frequencies
just by 0.2%. A considerable amount of the field inten-
sity persists in the region far from the boundary. This
is because the band gap is narrow and the edge state is
close in frequency to the bulk bands.

As for the armchair edge, the upper and lower edge
states are obviously chiral (one-way) in the omnidirec-
tional gap region. The group-velocity flow of the edge
states are common in the zigzag and armchair edges.
Namely, the upper edge states flow negatively (from
right to left), whereas the lower edge modes flow pos-
itivity (from left to right). Thus, a counter-clockwise
flow is realized in the omnidirectional gap. We should
note that there are another armchair edge states around
ωa/2πc = 0.625 outside the omnidirectional gap. They
are nearly degenerate although not clearly visible. Actu-
ally, there are two curves (red and blue) both for posi-
tive and negative k∥ regions. However, their dispersion
curves are terminated in the same band, and thus these
edge states are irrelevant to the nontrivial topology.

As an independent check of the effective theory, we
also evaluated the Chern number numerically by the BZ
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integral.18 We obtain C = 1 for the lower (in frequency)
band and C = −1 for the upper band. The results are
consistent with the flow of the chiral edge states.
Finally, let us comment on a possible experimental ob-

servation of the predicted effect. As noted, we assume
two kinds of ferrimagnetic cylinders placed in a honey-
comb lattice with lattice constant on the order of sev-
eral hundred microns. This length scale is derived from
ωa/(2πc) ∼ 0.6, ωm/ω = ±0.01, and ωm typically in sev-
eral GHz. A direct measurement of the chiral edge state
can be made with a pointlike or linelike source and re-
ceivers such as THz dipole antenna. If a source is placed
near the edge, the light emitted from it can propagate
in a unidirectional manner along the edge. One of the
two receivers placed left and right of the source along
the edge can detect the uni-directional propagation. The
other receiver keeps silent. If the magnetization of the
ferrimagnetic rods is reversed, the emitted light propa-
gates in the opposite direction. Therefore, the roles of
the two receivers are interchanged.

V. SUMMARY AND DISCUSSION

In summary, we have presented effective Hamiltonians
in triangular-like PhCs having C6v point group symmetry
as the zeroth order approximation. The k·p perturbation
and the perturbation of the broken symmetries are taken
into account. The effective Dirac Hamiltonian around the
BZ corner is derived analytically. It predicts the topo-
logical phase transition for honeycomb-lattice PhCs. The
predicted phase diagram agrees quite well with the nu-
merical phase diagram obtained previously. The effective
Hamiltonian around the center of the BZ is also derived.
The Hamiltonian predicts a topological phase transition
even for a staggered configuration of the applied mag-
netic flux. The resulting nontrivial topology is numer-
ically verified by the existence of the chiral edge states
via the bulk-edge correspondence, and by the numerical
calculation of the Chern number.
In this paper we have presented effective theories

around degenerate points in triangular-like PhCs by
group theory. It is noteworthy that our derivation of
the effective Hamiltonian does not rely on the analytic
expression of the eigenstates for the full Hamiltonian as
in the tight-binding model, nor on any phenomenological
ansatz. The derivation is simply based on group theory.
Therefore, the method is easily extended to any system
of C6v point-group symmetry as the unperturbed system,
irrespective of system details, either bosonic or fermionic.
In addition, the present formalism can be applied

also to the systems with accidental degeneracy at high-
symmetry points in the first BZ. Recently, Huang et al.
showed that the accidental degeneracy at the Γ point re-
sults in a Dirac-type spectrum intersected by a quadratic
one.29 To obtain the accidental degeneracy, we need a
fine-tuning of the physical parameters, such that the fre-
quency of a non-degenerate mode coincides with that of

a degenerate mode. Such a system acts as a novel meta-
material with zero refractive index. Thus, it will be im-
portant to explore the effects of broken symmetries and
detuning.

Another important issue is a way to introduce broken
symmetries. In this paper we pick up the index contrast
between the A and B cylinders for the honeycomb lat-
tice and the magneto-optical effect as the perturbation
of broken symmetries. However, sources of broken sym-
metry are not limited in these two perturbations. There
are many ways to break the system symmetry, such as
lattice distortion, TE-TM coupling, and optical absorp-
tion. Among them, the radius contrast between A and
B will be important from the viewpoint of experiment.
The index contrast and the radius contrast have their
own merits and demerits. Although the radius contrast
can be implemented more easily in the fabrication pro-
cesses, the index contrast allows us to tune it dynami-
cally. We should also mention that the relevant Hamil-
tonian of the radius contrast has the same form as of the
index contrast, because the spatial symmetry of the rel-
evant Hamiltonians is the same. Therefore, if we replace
δϵz with δr ≡ (rA − rB)/2 in Fig. 3, a similar phase
diagram is obtained. Moreover, the topology change and
the chiral edge states discussed in Secs. III and IV are
allowed even if the unperturbed system does not have the
index contrast, but has the radius contrast.

Finally, let us comment on the similarity and differ-
ence in the parity anomaly between electronic and pho-
tonic systems. As noted in the Introduction, the parity
anomaly in electronic systems is the generation of the
Hall current under vanishing magnetic flux. The Hall
current and the Hall conductance of Ce2/h are directly
measured. On the other hand in photonic systems, the
Hall current and the Hall conductance are ill defined, and
thus the Chern number of the parity anomaly [Eqs. (44)
and (68)] is not directly measured. Instead, the bulk-edge
correspondence implies the emergence of the chiral edge
states as in electronic systems, which can be physically
observed.

Further difference in the parity anomaly between elec-
tronic and photonic systems can be found in their di-
mensionality. The 2+1-dimensional Dirac fermion refers
to the planar fermion confined in plane. On the other
hand, the two-dimensional PhC under study has infinite
extent in the z direction and the relevant eigenstates are
extended uniformly in this direction. Although the di-
mensionality is different between the two systems, they
both possess the parity anomaly in common as a conse-
quence of the Dirac spectrum. The mode confinement
around the edge also highlights a contrast between the
two systems. In electronic systems, chiral edge states
due to the bulk-edge correspondence are always confined
with the work function. In photonic systems, they are
not generally confined because of the leakage of the edge
states into the radiation continuum outside PhC. To pre-
vent the leakage in photonic systems, in this paper we
employ the perfect electric conductor wall as in Fig. 6.
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However, even if the leakage exists, the bulk-edge corre-
spondence of the parity anomaly still holds as shown in
Ref. 18.
We hope this paper stimulates further investigation

of the parity anomaly and relevant symmetry-breaking
physics in photonic systems.

Appendix A: triangular lattice

Let us summarize the results for a triangular lattice.
In the triangular lattice composed of circular cylinders,
we consider the effective Hamiltonian around a doubly
degenerate E mode at K and K’. The k · p perturbation
and the perturbation of the broken TRS are taken into
account. Let us denote the magneto-optical coupling of
the cylinders as ζa. The effective Hamiltonian in the
linear order of δk and ζa becomes

HK(K′) = τ3λk(σ3δkx − σ1δky) + λζζaσ2, (A1)

where τ3 is the valley spin, namely, τ3 = 1 for K and
τ3 = −1 for K’. This is a massive Dirac Hamiltonian
with mass λζζa. The mass term does not change its sign
between K and K’ points. Therefore, the Chern number
becomes

C = ±sgn(λζζa), (A2)

provided that the two bands touch solely at K and K’ in
the unperturbed system. The ± sign refers to the upper
and lower bands. Since ζa is proportional to the applied
magnetic field, it corresponds to the sign of magnetic
field.
At the Γ point, there are two kinds of double degen-

eracy, the E1 and E2 modes in the unperturbed system
with the C6v point group. In both the cases, the effective
Hamiltonian up to the second order in k and ζa becomes

HΓ =
(
λ
(1)
k2 |k|2 + λζ2ζ2a

)
1̂ + λζζaσ2

+λ
(2)
k2 (σ3(k

2
x − k2y) + 2σ1kxky). (A3)

Note that the terms proportional to kiζa vanish by the
SIS. The Chern number is the same in its expression as
Eq. (A2), if the two bands touch solely at the Γ point in
the unperturbed system.

Appendix B: kagome lattice

Next, we consider a kagome-lattice PhC that consists
of A, B, and C triangular sublattices of circular cylinders.
A doubly degenerate E mode emerges at the K and K’
points if A, B, and C cylinders are identical. Around the
degenerate point, we consider the perturbation in the
linear order of δk, δξα, δϵzα, and ζα (α = A,B,C) with

δθα ≡ θα − θa, (B1)

θa ≡ 1

3
(θA + θB + θC) (θ = ξ, ϵz). (B2)

The effective Hamiltonian becomes

HK(K′) = τ3λk(σ3δkx − σ1δky)

+λξ

(
−σ3

3

2
(δξB + δξC) + σ1

√
3

2
(δξB − δξC)

)

+λϵ

(
−σ3

3

2
(δϵzB + δϵzC) + σ1

√
3

2
(δϵzB − δϵzC)

)
+λζ(ζA + ζB + ζC)σ2. (B3)

Note that the terms proportional to δξα or δϵzα are ab-
sorbed in the redefinition of δk:

HK(K′) = τ3λk(σ3δ̃kx − σ1δ̃ky) + σ2M, (B4)

M ≡ λζ(ζA + ζB + ζC), (B5)

δ̃kx ≡ δkx − τ3
λξ

λk

3

2
(δξB + δξC)

−τ3
λϵ

λk

3

2
(δϵzB + δϵzC), (B6)

δ̃ky ≡ δky − τ3
λξ

λk

√
3

2
(δξB − δξC)

−τ3
λϵ

λk

√
3

2
(δϵzB − δϵzC). (B7)

Therefore, a massive Dirac spectrum is obtained with re-

spect to shifted momentum δ̃k. The Chern number now
becomes the sum over of the two Dirac photons localized
around the momenta slightly shifted from K and K’. The
result is simply given by

C = ±sgn(λζ(ζA + ζB + ζC)), (B8)

provided that the two bands touch solely at K and K’ in
the unperturbed system.

Around the Γ point, the effective Hamiltonian up to
the second order is given by

HΓ = λ
(1)
k2 |k|21̂ + λ

(2)
k2 (σ3(k

2
x − k2y) + 2σ1kxky)

+λξ

(
−σ3

3

2
(δξB + δξC) + σ1

√
3

2
(δξB − δξC)

)

+λϵ

(
−σ3

3

2
(δϵzB + δϵzC) + σ1

√
3

2
(δϵzB − δϵzC)

)
+λζ(ζA + ζB + ζC)σ2, (B9)

for both the E1 and E2 modes. Note that the cross
terms of kiδξα, kiδϵzα, and kiζα vanish by the SIS. We
also note the quadratic terms composed of δξα, δϵzα,
and ζα are nonzero, but are neglected for simplicity. In
this case the terms proportional to δξα or δϵzα cannot
be absorbed in the redefinition of k. As a result, the
equifrequency curve is not isotropic around the Γ point,
but is invariant under k to −k. The Berry phase for a
closed circular loop with radius k0 around the zero mo-
mentum is given by θB = ±2πsgn(λζ(ζA + ζB + ζC)),

provided |λξδξα|, |λϵδϵzα|, |λζζα| ≪ |λ(2)
k2 |k20. Thus, the

same Chern number in its expression as Eq. (B8) is ob-
tained, if the two bands touch solely at the Γ point in
the unperturbed system.
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Appendix C: representation matrices

Here, we summarize the representation matrices used
in the paper. We assume the following matrices for the
E representation of the C3v(= {1, 2C3, 3σy}) k group at
K(or K’):

DE(C3) =

(
−1

2 −
√
3
2√

3
2 −1

2

)
, DE(σy) =

(
1 0
0 −1

)
.(C1)

As for the E representation of the C3v(= {1, 2C3, 3σx})
point group at the Γ point, we assume

DE(C3) =

(
− 1

2 −
√
3
2√

3
2 − 1

2

)
, DE(σx) =

(
−1 0
0 1

)
.(C2)

Obviously, the above representations are orthogonal, and
thus unitary.
The E1 and E2 representations of the C6v(=

{1, 2C6, 2C3, C2, 3σx, 3σy}) point group of the unper-
turbed triangular and kagome lattices at the Γ point are
given by

DE1(C6) =

(
1
2 −

√
3
2√

3
2

1
2

)
, DE1(σx) =

(
−1 0
0 1

)
,

DE1(C3) =

(
− 1

2 −
√
3
2√

3
2 − 1

2

)
, DE1(σy) =

(
1 0
0 −1

)
,

DE1(C2) =

(
−1 0
0 −1

)
, (C3)

DE2(C6) =

(
−1

2

√
3
2

−
√
3
2 −1

2

)
, DE2(σx) =

(
−1 0
0 1

)
,

DE2(C3) =

(
−1

2 −
√
3
2√

3
2 −1

2

)
, DE2(σy) =

(
−1 0
0 1

)
,

DE2(C2) =

(
1 0
0 1

)
. (C4)

Since the E1 representation basis behaves like (x, y), its
representation matrices are easily derived. On the con-
trary, the E2 representation basis behaves like (xy, x2 −
y2). Therefore, naive representation matrices by the ba-
sis become, for instance,

D̃E2(C6) =

(
− 1

2 −
√
3
4

−
√
3 − 1

2

)
, (C5)

which is not unitary. To make the matrices unitary, we
perform the similarity transformation as

DE2 = V −1D̃E2V, V =

(
1 0
0 2

)
, (C6)

resulting in Eq. (C4).
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Natl. Acad. Sci. USA 109, 9761 (2012)
17 O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev,

and D. N. Christodoulides, Phys. Rev. Lett. 98, 103901
(2007)

18 T. Ochiai and M. Onoda, Phys. Rev. B 80, 155103 (2009)
19 S. Raghu and F. D. M. Haldane, Phys. Rev. A 78, 033834

(2008)
20 This “local” procedure does not correctly take account of

the entire first Brillouin zone, which is two-torus. See dis-
cussions in Ref. 30

21 P. R. Wallace, Phys. Rev. 71, 622 (1947)
22 T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and

its Applications in Physics (Springer, 1996)
23 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955)
24 K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko,

M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and
A. K. Geim, Nature Physics 2, 177 (2006)

25 D. M. Pozar, Microwave Engineering (Wiley-India, 2009)
26 For completeness, the parameters of the effective Hamilto-

nian are λ
(1)

k2 = −0.174, λ
(2)

k2 = −0.422, λA
ζ = −0.0138 ×

(2π/a)2, and λB
ζ = 0.0885 × (2π/a)2, λA

kξ = 0.0408 ×
(2π/a), and λB

kξ = −0.0954× (2π/a). The parameters λA
ζ2 ,

λB
ζ2 , and λAB

ζ2 exhibit slow convergence, but are irrelevant
if ζA and ζB are small enough.

27 Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993)
28 K. Wakabayashi, Y. Takane, and M. Sigrist, Phys. Rev.



12

Lett. 99, 036601 (2007)
29 X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan,

Nature Materials 10, 582 (2011)
30 M. Oshikawa, Phys. Rev. B 50, 17357 (1994)
31 This “local” procedure does not correctly take account of

the entire first Brillouin zone, which is two-torus. See dis-

cussions in Ref. 30.
32 For completeness, the parameters of the effective Hamilto-

nian are λ
(1)

k2 = −0.174, λ
(2)

k2 = −0.422, λA
ζ = −0.0138 ×

(2π/a)2, and λB
ζ = 0.0885 × (2π/a)2, λA

kξ = 0.0408 ×
(2π/a), and λB

kξ = −0.0954× (2π/a). The parameters λA
ζ2 ,

λB
ζ2 , and λAB

ζ2 exhibit slow convergence, but are irrelevant
if ζA and ζB are small enough.


