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KERT NF A4 & (HAp, Ca,n(PO,)s(OH),) BIU
RER7 8% 4 1 (CAp, Cay,(P0,):CO:) 13F - D
R SETNVE LTEELYWETHD, ZOHK
EPERT 2RA DL ATONTERHAp ZDWTIE
B & /N i BE R K BRI K o THE & b2ees),
Z D% Roy®, Eysel 5™, K#7 5 v 7 A% v
THEE 8mm, &E500um OEFE/REER LIz, Ihi
- TTERADER HAp BiffEfE Mengeot 5812 & o TH#H
EINZDHBDT, 7X 3 X3 mm*OILEREHHEKEE
TELDThHol, —HT, 77V 7 ABRCEI>TH
LT T 38 A4 b Bifhah 2 KREKH1300°CT 238
MIMELE L, Cl4 4> OH A A v 2 BB T L 2 &
W&o Th HAp OEEERSH/ SN T VB9, Z D
BAETER b WS a D 2B o> TH Y, BHEE P2,/
b T, c BRI Z T 3 HFEDBELZE R L Tzt B
B & R WERLERO HAp BiSEROBE R LIfl
FINE THREEI L TR,

—77 CAp DWW Tid, EET100°CLA T Tomk
¥ 72121000°CIZ 1T 2 A A VBB X o T, ERDR
R/ oSN TS, BERICDOWTIE, KREGEC LS
T COs&H HAp OBRICEI) LT G Hlosdh 571210,
HHE OKREPINC L o CTHEHBR 21T 072356, OH A
F DY A T+ (AYA M) BN OH A 4 08
FHL,COA > CEBMT LDIIERETH 5, %D,
AV A DNCIRDHRED COA A > o&ATRBER2E
K B 7291213, OH OfENGET COA 4 > 2H D7
v 7 Al BEFERBIENTHD EHFLON
%, $7b b, CAp BB OHFFROEEY &
LT Caz(PO,), (TCP)-CaCORMEZ 5N 5, T
TTZORzEAWUERERICLERBREFERE T
#Es % & CaCO,;%8 CaO & CO,IZ #3228, Z D
BIXEEREEAWS 2 L TRRTE 5,

COsA # i3 HAp 1D OH A 4 > 7210 T% PO, A
ArDH A4 NBYA L) BEBLY B, CO A4 %
BYA MNCEET S HAp DMK ZEBREFIC L > TERK
T 572912, Na,CO,% 7213 NaHCO; % R RN
2B ERMTbNTWw3®, Zhix, Na A4 Ca

TI88 A I SRAGE W ONE Sk E & S

YA MIEAINZZLICL>T, CO;DBY4 B
PO e S BRI IEEMR R FHIET 57: 0, BEfSEES
NEPOTHE, FAROBIENR 7 7 v 7 AKITBWT
bHIRF AN, T42bb 7T v 7 AW Na,COs 2ERINT
52 EMNCO4F % CAp D BV A Mo is w57
DIZEThBL EEZOND,

KETW, 75 v 7 2% FWT HAp, CAp B L U
CO:&H HAp OEBEMERZ1T o /o RIc DTS
T %,

2. 1.2 =B

HFERTH 2 TCP, Ca(OH), Na,COs i3 AT D
LS W L, £ CaHPO, (F vy v A 1) % CaCO,
(FE~=7 V78, 99.99%LAE) &V VB (Ft
BT 8, 85%) DEIGIZ & - TARKL, 800°CT 2
FEREIINEVLER L ¢ -Ca,P,0, 2 &R LTz, VT Ca,
P,0, £ &E)VED CaCO BIRA L, 1300°CTIRFRIIN
By DI LI > T g-TCP 2872, Ca(OH) iz oW
T CaCO,%1050°CT 3 KEfEIINEAL ¢ CaO & L7z D
B, WHIBERIC BV TIKELL THB, RIGROR
B ER92000CTH 5, Na,COs i3IS (FEMiZET
SERY) % 350°CT20RFRIALIE L, BE LTcka2BREL
THWkE,

HAp O#EEEE R IE TCP-Ca(OH),0 2 TLRIBEL
KE2Pt8oOY 72N (EE10mm, £350mm, EE
0.2mm) IEH A L TIT o 2. CAp OfEEE K IcIk TCP
-CaCO;D 2 TRIEEMREH W, £72, AV A +D
CO,BE=fHIfEIL T CO,&H HAp D& EIT) 120, &
72 B¥4 D CO.EEHIFL T CAp 2GHT B0,
ZhZ1 TCP-CaCOy~Ca(OH) .8 & F TCP-CaCOs-
Na,CO;D3ITTHR % flnde S RE R Ar TAERT
TIT o720 K2, LI EEZEE OB % 7R3, TCP-Ca
(OH),, TCP-CaCO;, TCP-CaCO3;-Ca(OH),, TCP
-CaC0,;-Na,CO; D FNZFNDRICDWT, KB %
F2.1~2. 4T, WEBHROE, SERR» S K
EIMOHL, {0877 v A%10wt %D EDTA-Na,
REWICHHMRBE T 2 2 s & o THER U 7z,

& & NiziEEEOFE I3 R X BEHEE (XRD,
740y AR PWI18208)) iz X - TiTo /2. XRD #l
El¥ CuKa (40kV, 50mA) TiT-olz. %72, Boh
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Fig. 2.1 Scheme of high-pressure vessel.
Table 2.1  Synthesis condition of system TCP-Ca(OH),.
No. TCP(mol%) Ca(OH)y(mo%l)  Pressure (MPa)  Max temp. (C) Process
2 hours duration (14507C)
0 25.0 75.0 100 1450 SC/hour (1450—1100C)
Table 2.2 Synthesis conditions of system TCP-CaCOs.
No. TCP (mol%) CaCOy(mol%) Pressure (MPa) Max temp. (T) Process.
1 326 674 190 1300 80 hours duration (1300'C)  -30°C/min (1300—+800C)
2 326 674 65 1300 60 hours duration (1300C)  -30'C/min (1300—+800C)
3 36 674 55 1300 70 hours duration (1300C)  -30'C/min (1300—+800C)
4 121 879 55 1400 12 hours duration (1400C)  -30'C/min (1400—800C)
1 hours duration (1400C)
5 244 756 55 1400 11 cycles oscillation
(+10T/min (1200~1300'C), -1 T/min (1300—+1200T))
6 326 674 55 1300 18 hours duration (1300T) -1 T/min (1300—(100°C)
1 i 163
¢ 2 e &2 1300 2Chour usmﬁ'fu&‘v‘é’!’“’l@ﬁ.ﬁ. ()moo«: 100T)
8 326 674 52 1500 2 hours duration (1500°C) -5C/hour (1500—13007C)
9 326 674 26 1400 2 hours duration (1400C) -5C/hour (1400—1000T)

Table 2.3 Synthesis conditions and formlae of obtained crystals
of system TCP-CaCO,-Ca(OH),.

No.  TCP(mol%) CaCO(mol%) Ca(OH)y(mol%) Pressure (MPa) Max temp. (T)
10 317 656 27 100 1450

Formula of obtained crystal
Ca50{(PO4)s si(CO3)o36)I[(OH)o 2(COs)o 5]

11 237 736 27 100 1450 Cag11[(PO)s x(COos0)l[(OH)o 76(COs)o 2
12 336 60.9 55 100 1450 Cas 11l(PO)s 74(CO3)o26)]1(OH)o ss(COs)o 56
13 231 717 51 100 1450 Caoul(PO; 4s(CO2)o s2l(OH)o 58(CO3)o s1]
14 302 623 75 100 1450 C8552[(PO)s 14(CO3)o 1I(OH); 52(CO3)o e}
15 294 608 98 100 1450 Ca55[(POL)s (CO)o 2)][(OH)1 4o(COs)o 0]
16 162 162 61.7 100 1450 Cas l(POL)s 64(COs)oo6)l(OH)z 0
17 17.3 104 723 100 1450 Cag 3l (POL); 4(COs)o 1) (OH)1 0
18 181 6.0 75.8 100 1450 Cay5l(POL;s 52 CO)o 02)|(OH): 0
19 188 75.0 63 100 1450 Cas53[(POL)s 3(COs)g 19)JI(OH), (COs)o 2]
20 16.7 66.7 167 100 1450 Citg 56{(PO)s 52(CO3)o o) II(OH)o n(CO3)o 11]
21 167 50.0 333 100 1450 Ca595{(PO)s s4(COs)o 10)[(OH)1 0
22 16.7 333 500 100 1450 Cay [(PO,); 2(CO3)o o)l (OH)z 0

Table 2.4 Synthesis conditions of system TCP-CaCO;-Na,CO;.
No. TCP(mol%)  CaCOy(mol%) NaCOy(mol%) Pressure (MPa) Max temp. (C)
23 213 54.5 18.2 100 1450
24 20.0 40.0 40.0 100 1450
25 5.0 50.0 45.0 100 1450
26 10.0 50.0 40.0 100 1450
27 15.0 50.0 35.0 100 1450
28 20.0 50.0 30.0 100 1450

IR EBEFE I u—T <4 707+ 749 —(EPMA,
JEOL %! JXA-8600MX &) THHMT L7z, IIEEBEES £

PE—LEHIZI5kV, 10nA & L7z, fEHEREE LT
CaSiO; (7 # 7 A M4 b) BifEdhB I MbF & HAp
BEftEA %2 Flniz, 88 CO,DBEIZRESTE (Leco
B CS-444R) 1c X > TIT o 120 THIZ, EKHTBIRA
2 CEABEMAL, BEET 2 COA R & ARIEIN
MHEBC LS TCEEMITI2DTH S, £/, HF
D7 =Y TEWFRNBI (FT-IR) A7 bz, /8
— ¥ > )b~ —# Spectrum2000ZY H E2EE 12 &k > THI
E LTz, 3kHE KBr THR102 0 1 @& R L, fhE S
HBICTHIE L TzoNy 7 777 >~ R OFEIEI KBr 8k
DT —FEHWTITo 7,

2. 1.3 BRBIUEE
2. 1. 3.1 Cas(P0O,),-Ca(OH),%

100MPa T ® TCP-Ca(OH),% 8 & ! TCP-Ca
(OH) ,-H,0 5% D FHrBALR 13 700~950°C D I5 B B I
T Biggar'®ic X - THE I h, 2z HAwi 3Ca,
(PO,),+Ca(OH),— Ca,(PO,) s (OH) ,D K1z & %
HAp HE#ESLBE RS Roy?, Eysel”iz X - TfTbh T
%5, LorLZns s THY &7z REHEE (900°C
PUF) BWHEROEE SR SERTHY, HELBRK
BEEL TIEENTIE L, HESEBREOARI
BRIIL7z £ w5 i b B o s v, REE T, 25mol
%DE TCP EE £1450~1100°COBE R Z FH\wiz,
2.2l L7z HAp Bi&&& OB 2 =T, ¢ BRI
FLLAA#REE b OAAERT, BROLOTRS
7mm, Elmm Z#E L7z, EPMA 534 OFE%E Ca/P H
31.67(1) TH Y, OH BIIHEE TE o728, K
25 Ca 0 (PO,)6(OH), TH B Z L BiRn LTz g7 — %
% CAp & & HIZRK2.5ETR T, AiL%E 72 S I WZEREE
P2,/b CBY 2 EAR L L VS N: (2.26iF
),

Fig. 2.2 Stoichiometric HAp crystal synthesized in the TCP-Ca
(OH), system (sample No.0).
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Table 2.5 The comparison of crystal data for HAp and CAp.
Data for powdered CAp are cited from [Elliott et
al. (1980)'7]
CAp (No.5) HAp (No.0) A-type CAp (powder)
Chemical formulae  Cag 75[(PO4)s 5(CO3)y5]CO3 Cayo(PO4)s(OH), Cayg(PO4)sCO;3
Space group P6 P2/b Pb
a/nm 0.9480(3) 0.9419(3) 0.9557(3)
b /fam 0.9480(3) 1.8846(6) 2a
¢/nm 0.6898(1) 0.6884(2) 0.6872(2)
vl 120 119.98(2) 120.36(4)
Z 1 2 2

2. 1. 3. 2 Ca,;(PO,),-CaCO;%

(3- x/2)Ca; (PO,) ,+CaCO;— Cajo_xz [(POL)s-x
(COs) x] COsDR % R fERBRLIC B 1T 5 FIEA
i, fEdm B BRI LB EREICET S CaCO:050 CO,
H A DRk T H % ,CaCO;=liquid+CO,D Ktz & %
COH AFEN RV L b4MPa TH Y, AR B
% COHADENIZ, BB|OBFELBEICL > TIX10
MPa %#8 2 281020 FEp 30MPa, 1400°CT{To72
FiEEERTIZ COES1H30MPa 2#8 2, Pt 7 7L
WL Tz,

#110MPa T® CaCO,;-TCP % DOHEF# i Eitel?V
Ko THEEN TS, ZOKTIF CAp tH28 Cay
(PO.)6COs, Tob B bR ILD A Bl CAp £ LTR
ENTW3,3%2.2HDFEE No. 1 ~ 3 TiZEEHEEK %=
32.6mol% TCP, 67.4mol%CaCOst L, HmERE %
1300°CE LTENZELE R, WTFhoETI
CAp ’FD sz hd, HifEmDEEKIE No.3 D4 TH
BINiz, ZORERIZ, KX ROEHEFEI55MPa £65MPa
DRIT1300°Clc—3T 2 Z £ 2R L TWw5,66MPa T
X CaCO31x 75 v 7 R & L THAREL 2\,

X2.31c38¥} No. 4 2R T #dkiER 4100 um Dt
RThy, AsthEE»roRELIEbDEEZ N
% Z &b, ES55MPa, #HA12.1mol%TCP, 87.9
mol%CaCO; T IZ WA 1400°CA T D S 2 Eild 3
bbb,

KB DOFEREZBRT 272012, BEOIREIGIHE & 15
WERAI, Bl LT, #¥ No.5 Ti31400°CTD1KF
IR FF D #:1200°C~1300°CRE T11[E DR EHRE) %17 >
720 1200°C» 5 1300°C iz 8§ 5 B2 1310°C/ 4 T, &
721300°C2 51200°Cic iR 3~ 2 1k 1°C/ 9 TfT o 26
% 72, 38 No. 7 121500°CH> 51400°C % T 2°C/H¥,
1400°C#> 5 1100°C & T 4 C/BRF TR 21T o 12o

(2.41353% No. 5 DFEFDOV £ 22T T, BRI ¢
Bl 5 AN AR L 7e A AR T, BE13700um TH o7z,

= iy

i

Fig. 23 CAp single-crystals grown by CaCO; flux method:

sample No.4.

Fig. 24 CAp single-crystals grown by CaCO; flux method:

sample No.5.

X2.51% 58 No. 7 OYIRHFETH %~ 3. #48 No. 7 D
BERIEES 5mm, FE500um IELRY, HLD7 T
v I RELCTW, TD7 7y 7 DRERNHT R
AELT No. 7 Tid& 5121000°CH 5400°C £ T 5 °C/K
TOHRE £20~30°C/FTORSEEZTNFTNEAA &
WA BERC & 2 B R, A
IR R HLD & { CaCO, DRIz & % CAp &
OEBERHIET 2 L 2B LD THo 7248, »
Thd CAp#ESRFD7 7y 7 0FRERIFEIT A L1
TERDoONR, THODERNMS, 77 v 7 DRER
By 3y 7% CaCODfERMERICL 2 bDTIERL,
CAp & CaCO;DEFREDELICEZbDEFZ BN
1es

2. 6138 L7238 No. 5 OIEHUL SRR A~
7 bWV THB,CO5I & BN E — 27 #3900cm™' 6 & OF
1350~1650cm™ BB 5N B, ZNHDE — 7 i
WIRTEIWCAYAPEBYA D CO;IcEBBDI



D CEEREEAS VY Y ACEET B ST

Fig. 25 CAp single-crystals grown by CaCO,; flux method:

sample No.7.
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Fig. 2.6 Diffuse reflectance FT-IR spectrum of powdered car-

bonate apatite (sample No.5).

S E 28242529 CaCO,7 7 v 7 AR IV EBERL
TeAEERTIZIZ A YA b, BY A b EBIZ COs A F »8
BHENTWS Z L3 bHPO,DEFELEETRT550.9
cm ' O E e d o 2o F723600cm 1D OH
AF Ik BRNBESIT, AH A4 M COA F >
KEoTRBHAEIN TR I EBbhrbd, Lizd
2T, ZOREDERERIZ Caro_x[ (PO,) s-2x(COs) 2]
(COy) BT 2, ZOMBATIE B YA bD COsA A
X BEBICHES BRFDANT > X1E Ca YA DK
THibh b,

¥ NO.5 D Ca, P, C Do#{EIZZHZH, 39.0,
16.9, 1.8wt%T» Y, Ca/P HLix1.78ThH o7z, TD
e 5EBEDEZRR Caomnl(PO,):s(C0:) s
(CO) e &0, BHA PO L/1I2BCO 4 L 2 i2E>
THESNTWR Z EBNREN, EREHEVBRERZ >
THZDERKRELS B Lo,

#2518} No. 5 OfEf7 —2 % No. 0 ® HAp f&

gh, Elliott 5"z X 2{bZEBw AB CAp DT -4 &
L HITRT 38 No. 5 ORFESM a 13 HAp £V v K
&<, ABICAp D b/h&wv, — &Iz, £ A DR E
EDEDID, CO A A4 VT alih® A VA ME#UC
IOHREL, BY A4 MEHICX DV EMHET 527 No.5 D
TR AYA POTRTE BY A bO—EH COs14 A
Lo TEBBENTHEDT, BTEK a DIEIZS
R EFEL RV,

No.5 D& TES ¢ i HAp, {b¥EH A CAp D
WIFNED HBKREW, CO; M4 >D BV A MBI &
% c Biob T MEIX LeGeros DIRES . —F L
Tw%, BY¥A b CO;EHIIER/NT » 2 DHERFD
72 Ca¥ v bORMEHES>TED, 20D FEHR
NWEALT 5, L7235 T BY 4 b CO,BEHICFES KK
FEBOEIZ DV TR & D RN BREBLETH
o

2. 1. 3.3 Cay(PO,),-CaC0O,-Ca(OH),%

100MPa i2 81 3 TCP-CaCO;-Ca(OH) ,5% D
i Biggar®®iZ Lo THE SN T WS, 78 4 b
HOFER Z DREFHEHIC bEEHES N TWBH, 20D
HREFHIC OV TR THTH . A%R Tl (3-2/2) Ca,
(PO,) 3+ (x+9) CaCOz+ (1= v) Ca (OH) s~ Cayo_xz
[(PO.) 6-x(COs) ] [(OH),-,,(COs),] DRIGIZ LD,
R Cayp o [ (PO CO ] [ . (COL) 4]
THEENS COEH HAp BERT £ 20N 5,5
HEDx BLU Yy X FT-IRBEIC &L > THRE LTz,
EDRER, A VA b BYA bDCOsA 4 > DHESME
BICER T 2RI — 27 A Z L #h882cm! L 873cm ™!
KEHEh, FhoDY —27 OMEL L RESHTOR
B 5, Cagrs[ (PO,) 55 (COs) 5] (COs) Lo DEIEFER %
HAEL LTAYA FBLIUBYA b COBHEZHR
L7z

2. 713 HFEEROMK &5 o Nl i &0 2
TCP-CaCO;-Ca(OH) , R=AM Eic7ay b LIzbD
Ths, BPHEEE 2, @MELNIEROMEKZ
RLTwE. 01 Cawl(POJ): (OH)s & Caisnsl (POJss
(CO3) 05 1COs 2 HEME T 2 EHAR LICIZIZELTIL THB D,
AR TERARER CO&H HAp DM » Z DfF Eic
HIRENBZERERLTWS, y>0.507 874 b®
AV A4 ELEBYAMDOBHICOAF > 2EETS
TRIA P BERRTREAELTER VW E2H2.81F A Y
A N REHBRUIIREBE (y) £ BYA PEREBELCKEBRE
(x) ORARERLTW %, KR Cajoo [ (POL) 6«
(COy) x] [(OH)2 2, (CO,),] EBWTRE, BYA +D
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Fig. 2.7 Relation between compositions of starting materials
and obtained crystals of TCP-CaCQ;-Ca (OH), system

at 100MPa.
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Fig. 2.8 Relation between the contents of A- and B-site-sub-
stituted CO; ions in the apatite crystals grown in the
system TCP-CaCOs-Ca(OH)2. The abscissa and or-
dinate indicate y and x given in a formula Cajo-y,

[(PO:)6x(COs) ] [(OH), 4, (COs),], respectively.

CO; B & 2B EE» o DIEEIT A 94 b i3
W CavrA PORBEL > TR TEY, x & y i
MWILDINT A= THb, LL, M2 8IcHA6N5 &
I, x & y IWIEWHEBR o h, BIE T — 5 1%i1%
x=y/2 L EFILT 02, 75 v 7 REIC L 2IEHE
BIC B 5 COs & HAp O CO,EHfHIL, ZDOHIRD
PIZBWCHEETH %,

2. 1. 3. 4 Cay;(P0O,),-CaC0,-Na,CO;%
#10MPa o B % Ca, (PO,) ,-CaCO;-Na,COs %D
FHEHRE, EitelPPic ko> THRESNTWE, ZDH
TR TH 785 A MHOEERTR SN TS,
ZOMBCDOWTIEATHTH 5, AR T (3-2/2)Ca,
(PO, +(1+x-2/2)CaCO,+ (2/2)Na,CO;—

Ca(PO,),

CaCO, Na,Ca(CO,), Na,CO,

Fig. 2.9 Relation between compositions of starting materials
and obtained crystals of TCP-CaCO;-Na,CO; system
at 100MPa.

Calo—(x-(—z)lzNaz[ (PO,) 6—x(COs) . JCOOEIIC X D, #H
B CasozraaNaz[ (PO,)6-x(COs) x]CO; TRE NS
Na &8 CAp BERKT A EEZ LS,

B2 9 AR BN REEOBKEX2.7 L
B2 TCP-CaC0;-Na,CO %= MM EwwFay h L7
bOTH b, 155N HEE DML IZIE CagsNa,,
[(PO.) 45(COs)1,1CO; DFEHIZEHR LTV 5, B YA
b DREBEREIE TCP-CaCORDEMP D ZN L D b K
%<, gl Ca¥ A MTIFEAERIENZV, Ca P
N DORIBIC X BBEHOWIETIE B Y4 hD CO, B
0.5F CHIBREN/I-DIX LT, Na A4 DEAD
B¥4 +D COBRELRMESEIbDEHEZSND,

2.1. 4 &
(1) TCP & Ca(OH),2HW/:EE Ar # A FTD7
w7 ALY, HAp DHEBEFEERICEIN LI, &
SNSRI AERTES 7mm, £ 1 mm KA,
Ca,0(PO,) « (OH) ,{bEERM 2B L Tz,
(2) TCP & CaCOy 2RI EBHEAr AT TO7 <
v 7 A XY, CAp DHEEREBRICEII Lz, 85
iR AARRTHY, BE 5mm, ZES5um ik
AT, AV A b, BYAFebIZCOA4 VDEBRL
TB Y, ML Cagrs[ (POL) 55 (COs) 5] (COs) 1o TH
726
(3) Ca;(P0O,),~CaCO;-Ca(OH), RN 77 v 7 A
& b Cayo(PO,)s(OH) - Cagss [(POL)ss(COs)0s5]
(COs) 1. D AT EIE A D B i % 1872 o U FE UL DAH
REFET L Licd > T, b CO,= &4
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LZEWBEI LI AT A MEBYA MO COERIIE
FHBADSE D B, WY1 b O COBHUTITEEGHI A A
ZALDFEET L I EBNRENT,

(4) Ca;(PO,),-CaC0,-Na,CO;RD 7 T v 7 AEEIZ
&0, CaggNay, [(PO,)5(CO;)1..]COs D Hifi i 35
BN 7T Y 7 ABZBWT NaA 4 yOEACLD
BY¥ A4 b®D COBEBEESINS Z LS DITE S
72o

2. 2 JKERT /NF A b DfEREEHTENT

2.2.1 iFLoic

KEET7 /8% 4 + (HAp) OEERRNTIZ Posner 529,
Kay 5%, Hughes 53 2k > TiTbh, 7vE7T
RF A4 b O (@=0.9367 (1)nm, b5=0.6884(1)nm
(P6s/m))* 3BT 5 b D & & iz, LinL, Elliott!®
FALFERILO HAp BB TIHERT 85 4 b LA
P2,/b OFERFEERED LHEL, 51T, M200CTA
TR P6s/m WHIEER T2 Z E BB hER 5T, —
FHHACERIT 85 4 b, i Ca RIB7 5 4 MRE
BTH P6s/m ONRTTRTREEZET S LBHonTn»
%,

Dtk ZERIEE P2,/b \cE Wiz HAp OREEIFT
DR ERE AW TITbh, UTO &S ZEAEES
SN2z, Tbb, AV A bDOOHA A i
O-HfEG% ¢ WiCiZITFEITIC LT, b uEE E» 5 b
TN TAIE I TFET %, LedS>TOH A 4 >~
D b WEE D 5 DT LU0~ H OFMIL, a #H
BN R 5 L 23 WS b AR DWW T b BRER
DOIFHRERIEW UTe 28> TR EWEAL L, b Bi5 D R
X ailio 2 kb,

IEETHILFE R HAp OSEMET OH 4 £ >
DFMH G ERE 2 RE T 57T T E 243,
B % s 8 WHERHNLERBR OB RS RETH L 2 L
DSEE e AR B R LT & T, ME—, RTS8 A
N ARKBRATT MM TS 2 ik VAR L HAp
BRI BAE B & F D T, Elliott 59998 X RS AT 2
1To 28 EMHH 50, 2 THOSN-HERIZER
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B, HEFOMBREIZITEL Twb, k0 eiE
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RS OBBLREET 707 5 A Xtal 3.4 k> T
7o Tz ZAHlEHT 7 — % i3 Fisher %% Fw T¥HMEL
72 FHEEFORILEFB L VR EEELR 713 Interna-
tional Tables for X-ray Crystallography, Vol.439D
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Elliott &30 fE% iz, Ca, POUEED /S5 X —

Table 2.6 Crystal data and data collection parameters for HAp

structure analysis.
Formula: Calo(PO4)6(OH)2
Spacegroup: monoclinic P2,/6 (No.14)
a=0.9419(3)nm
5=1.8848(6)nm
¢=0.6884(2)nm
y=119.98(2)°
V=1.0586(6)nm’
z=2
D=3.152 g/cm3
Equipment: Rigaku AFC-5R four-circle diffractometer
scan mode: @20
scan speed: 8°/min
Radiation: AgKa (1=0.05608nm)
£~1.49mm™
Crystal size: 0.14x0.14x0.16mm
h=0-»19
k=-30-30
[=-14-—14
Rin=0.049
R,=0.037
R,=0.033
Measured reflections:18734
Independent reflections: 8892
Reflections used for the analysis (I >o(I)): 7401
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mENTze PLE» S, REEFHOEMEX P2,/b & HER
ENiz,
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Fig. 2.10 X-ray diffraction intensity scanned along %01, 0k1 and
~hhl on the first layer of HAp crystal. The indices are
given for the hexagonal system. Extremely strong

peaks are removed from the data, leaving gaps.
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Fig. 211 X-ray diffraction intensity scanned along 0£0 of HAp
crystal. The indices are given for the hexagonal sys-
tem. Extremely strong peaks are removed from the

data, leaving gaps.
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Fig. 2.12 Diffraction peaks along the c*-axis of HAp crystal.
Extremely strong peaks are removed from the data,

leaving gaps.
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Fig. 2.13 D-Fourier map of the (100) plane for the present HAp
crystal after the refinement for Ca and PO, group
without OH. The contour is at an interval of 500/nm?.
Solid and broken lines correspond to positive and
negative contours, respectively. Atom positions within

0.03nm from this plane are given.
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Fig. 2.14 D-Fourier map of the (100) plane for the present HAp
crystal after the refinement for Ca, PO, group and
hydroxy O without H. The contour is at an interval of
200/nm?®. Solid and broken lines correspond to positive
and negative contours, respectively. Atom positions

within 0.03nm from this plane are given.
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Fig. 215 D-Fourier map of the (100) plane for the present HAp
crystal after the refinement for Ca, PO, group and OH.
The contour is at an interval of 200/nm? Solid and
broken lines correspond to positive and negative con-
tours, respectively. Atom positions within 0,03nm from

this plane are given.
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Table 2.7 Positional parameters for HAp. Table 29 Bond lengths and angles formed in the HAp struc-
: ¥ 2 By ture. The parameters calculated on the basis of
Ca(1) 32641(6)  .58033(3)  .00081(7) 0.97 (1) hexagonal symmetry is cited from [Hughes et al.
Ca(1") 34044(6)  .58694(3)  49779(7) 091 (1) (1989)]
Ca(2a) 24599(6) .24649(3) .25293(7) 0.86 (1)
Ca@b) - .00670(6) .62305(3) .74424(7)  0.85 (1) HAD TiAp (hexagonal)
Ca(2c) 25397(6)  37346(3) .75590(7)  0.85 (1)
P(a) 63125(7)  26521(4)  .25469(9)  0.65 (2) P(a)-O(la) 0.1535 (2) 0.1534
P(b) 02971(7)  .44896(4)  .75148(9)  0.66 (2) P(a)-O(22) 0.1541 (3) 0.1537
P(c) 39787(7)  .43419(4)  .25468(9)  0.66 (2) P(a)-O(3a) 0.1536 (2) 0.1529
0O(la) 4842(2)  32788(11) .7583(3) 1.06 (5) P(a)-O(3'a) 0.1531 (2)
O(1b) 1567(2)  .58605(12) 2465(3)  1.04 (5) ggg;gggg g-gig 8
O(lc) .3278(2) 49213(12)  .2592(3) 1.06 (5) P(b)-O(3b) 0:1534 3)
0OQa) .5345(2) 3111211y .2437(3) 1.22 (6) P(b)-0(3'b) 0.1535 (2)
0(2b) 122002)  54334(11) .7334(3) 1.13 (6) P()-0(1c) 0.1533 (3)
0(2c) 5863(2)  48253(12) .2377(3)  L.14 (6) P(0)-0(20) 01542 (2)
0(3a) 7465(2)  29076(12) 0785(3) 141 (6) P(c)-0(30) 01533 (2)
0(3b) 0792(3)  41302(14) .58203) 1.40 (6) P(c)-0(3'c) 0.1535 (2)
0(3¢) 32783)  37519(12) .0820(3) 133 (6)
0(3'a) 7376Q2)  29506(12) .4376(3) 118 (6) 0(12)-P(a)-O(22) 11127 (12) 111.04
0(3'b) 0893(2)  .42890(12) .9401(3) 1.18 (6) 0(1a)-P(a)-O(32) 110.94 (12) 111.43
0@'c) 3565(3)  .38223(12) .4399(3) 1.16 (6) O(la)-P(a)-O(3'a) 111,51 (11)
o4) -.0003(2)  .25007(13) .3034(4) 1.19 (6) 0(22)-P(a)-O(3a) 108.00 (13) 107.51
H - .005(4) 253(2) A37(6) 237 (158) 8%‘1‘;'1;23;'88:*1; 18;%? 8?; 10773
a)-P(a)-0O(3'a . .
O(1b)-P(b)-0O(2b) 111.08 (14)
O(1b)-P(b)-O(3b) 110.57 (i1)
Table 2.8 Anisotropic thermal parameters of HAp. O(1b)-P(b)-O(3'b) 11151 (1D
7 o o 7 7 o 0O(2b)-P(b)-O(3b) 109.07 (12)
Ca(l) 0138(2) 04TQ)  00830(18)  OO7IB(7)  00022(15) - 0004(i5) O(2b)-P(b)-O(3'b) 106.68 (11)
Ca(t? 0128(2) O157Q)  .00810(17)  .008S6(17)  .00006(15) - .00045(i5) O(3b)-P(b)-O(3'b) 107.78 (15)
Gom onn omsy mele  sian oy so0es O(Le)-P(e)-0(20) 11105 (12)
Ca20) OILI317)  0131()  00043(16)  .00706(14) - 000I7(1S)  .00028(15) O(1¢)-P(c)-O(3¢c) 110.48 (14)
P(a) 0096(2) 10098(2) 0073(2) .gggiz(i; ngggjg; ngg; O(1¢)-P(c)-0(3'c) 112,05 (13)
ig :ggzggi 13?3322 gg;:g; iooﬁozéw) -:0()06(2) -:0002(2) 0(2¢)-P(c)-0(3¢) 108.71 (13)
0O(ta) 0186(8) 0153(8) 0122(7) 0130(7) - 0001(6) 0003(6) O(2¢)-P(c)-0(3'c) 106.87 (12)
b Wi wen o e oo we 0BOPEHOGY 10752 (1)
o) 01241 0148  02040) 0076 0030(7) 0007(7)
o(2b) 01257 01318)  021309)  00946) - .001XT) 10002(7) O(1a)-0(2a) 0.2539 (3) 0.2531
R e N v i B vt R 4 O(1a)-0(3a) 02530 (2) 0.2531
0(3b) 0144(9) 0192100 .0127(8) 0033(7) 10055(6) - .0016(6) 0O(12)-0(3'a) 0.2534 (2)
069 01819} 028K 0125() .m;;(:) ggjﬁ(:) xvgég 0(22)-0(3a) 0.2489 (4) 0.2473
gg':)) :giﬁgg g:::g; g:;g; ig(1)5427; -:003326; 0016(6) 0(2a)-0(3'a) 0.2473 (3)
0@'e) 0147(8) 020410)  0109(7)  .0102(7) 0001(6) 10029(6) 0(32)-0(3'a) 0.2477 (3) 0.2471
0) 0103(8)  0I289)  0222(11)  00S8(T) - .0010(6) - .0025(7) 0(1b)-O0(2b) 0.2542 (2)
O(1b)-O(3b) 0.2523 (3)
O(1b)-0O(3'b) 0.2539 (3)
0(2b)-0O(3b) 0.2508 (3)
O(2b)-0O(3'b) 0.2472 (3)
O(3b)-0(3'b) 0.2479 (3)
0O(1c)-0(2¢) 0.2535 (4)
0O(1c)-0(3c) 0.2519 (3)
0O(1c)-0(3'c) 0.2544 (4)
0(2¢)-0(3c) 0.2500 (3)
0(2¢)-0(3'c) 0.2471 (3)
0(3¢)-0(3'c) 0.2474 (3)
b Ca(2c)-Ca(2a) 0.4082 (1) 0.4085
" Ca(2a)-Ca(2b) 0.4089 (1)
Ca(2b)-Ca(2c¢) 0.4080 (2)

Fig. 2.16 The atomic configuration in HAp projected on the
(100) plane. H D 28> Ssb I nTtsh, FhicfE-T

PO,OOD550R) L 0@E)MBY7 FLTHRBRTH
2OCRTHOWEEHEM L BEAE LR T, AAHO 2,202k H L O0B)BXU0(3) D% gy
HAp & HBR L 72RO Bif#R O HAp DR S mlnid, % Ik o THERT & %, H-O(3a), H-O(3b), H
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Fig. 2.17 The atomic configuration in HAp projected on the
(001) plane.
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Fig. 2.18 Distances between hydroxy H and O(3)’s of PO, in
HAp.
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Table 2.10 Crystal data and data collection parameters for CAp

structure analysis.

Formula: Ca;jo(PO4)sCO5
Spacegroup: hexagonal P6 (No.174)
a=0.9480(3)nm

¢=0.6898(1)nm

¥=0.5370(3)nm’

Z=1

Dey=3.187g/cm’

Equipment: Rigaku AFC-5R four-circle diffractometer
scan mode: @26

scan speed: 8°/min

Radiation: AgKa (4=0.05608nm)
1=1.43mm™

Crystal size: 0.20x0.20x0.20mm
h=-19—>19

k=-19—19

[=-14—14

R,=0.014

Rs=0.009

R,=0.027

Measured reflections: 20008
Independent reflections: 1699
Reflections used for the analysis (I >o(I)): 1574
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Fig. 2.19 Precession photographs of CAp. Upper: /40 diffraction,

lower: hk1 diffraction.
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Intensity

Fig. 2.20 Intensity variation of X-ray diffraction scanned along
k01, 0k1 and -%A1 of CAp crystal. Extremely strong

peaks are removed from the data, leaving gaps.
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Fig. 2.21 Intensity variation of X-ray diffraction scanned along
c*-axis of CAp crystal. Extremely strong peaks are

removed from the data, leaving gaps.
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Fig. 2.22 Angular dependence of polarized IR absorption spectra
by out-of-plane bending vibration (v;) of CO; in CAp.
Solid line: electric vector is parallel to the c-axis,
broken line: electric vector is 45( to the c-axis, and
dotted line: electric vector is perpendicular to the ¢

-axis.
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Fig. 2.23 Angular dependence of polarized IR absorption spectra
by in-plane bending vibration (v;) of CO; in CAp. Selid
line: electric vector is parallel to the c¢-axis, broken
line: electric vector is 45° to the ¢-axis, and dotted line:

electric vector is perpendicular to the c-axis.
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Fig. 2.24 D-Fourier map of the (010) plane for the present CAp
crystal after the refinement for Ca, PO, group without
CO,. The contour is at an interval of 500/nm?® Solid
and broken lines correspond to positive and negative
contours, respectively. Atom positions within 0.03nm

from this plane are given.
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€ Table 2.11 Positional parameters of CAp.
; T @ 7 — Site occupation x ¥y z B
-0.5 x=0 0.5 Ca(la) i 23 13 02487(2) 146 (5)
Ca(1b) 1 113 23 0.2538(2) 127 (4)
c Ca(2a) 1 0.7517(2)  0.7410(2) 0 2.17 (6)
Ca(2b) 1 02497(2)  0.2608(2) 12 1.59 (5)
P(a) i 0.3708(3)  0.4019(3) 0 1.18 (6)
P(b) 1 0.6285(3)  0.5985(3) 12 1.10 (6)
a O(la) 1 0.4853(7)  0.3326(7) 0 2.37 (158)
o(1b) 1 05157(7)  0.6712(T) 172 097 (13)
! . O(2a) 1 0.4623(8)  0.5875(7) 0 3.08 (24)
Fig. 2.25 D-Fourier map of the (010) plane for the present CAp 0(2b) 1 0.5305(8)  0.4154(9) 12 4.11 (24)
crystal after the refinement for Ca, PO, group and COs. 0Ca) ! 0.2611(6)  0.3542(7)  0.1828(5) 2.19 (1)
o@3b) 1 0.7377(7)  0.6606(8)  0.3283(5) 5.53 (158)
The contour is at an interval of 500/nm? Solid and c 2 0 0 0.2491(15) 797 B87)
broken lines correspond to positive and negative con- o 12 0 0 0.0642(14) 229 (24
o) 1/6 0.1249(13)  0.0239(29) 0.3418(19) 16.58 (158)
tours, respectively. Atom positions within 0.03nm from 0(6) 1/6 -0.1271(16) -0.0276(48) 0.3411(21) 18.95 (711)
this plane are given.
Table 2.12 Anisotropic thermal parameters of CAp.
Uy Un Usy Up Uss Un
Ca(la) 0.0200(5) 0.0200(5) 0.0082(3) 0.0100(2) 0 0
Ca(lb) 0.0184(6) 0.0184(6) 0.0188(5) 0.0092(3) 0 0
Ca(2a) 0.0317(10) 0.0328(11) 0.0249(6) 0.0215(9) 0 0
Ca(2b) 0.0250(8) 0.0258(8) 0.0142(4) 0.0161(7) 0 0
P(a) 0.0180(10) 0.0214(11) 0.0114(6) 0.0146(9) 0 0
P(b) 0.0168(10) 0.0156(10) 0.0111(6) 0.0096(8) 0 0
0(la) 0.0348(27) 0.0451(28) 0.0222(19) 0.0291(23) 0 0
o@1b) 0.0128(20) 0.0124(18) 0.0166(18) 0.0100(16) 0 0
0@a) 0.0210(24) 0.013321) 0.0794(47) 0.0061(19) 0 0
0@b) 0.0373(33) 0.0402(34) 0.0913(53) 0.0291(29) 0 0
0O(3a) 0.0302(18) 0.0560(23) 0.0143(11) 0.0347(18) 0.0123(11) 0.0138(12)
0(3b) 0.0751(29) 0.1359(40) 0.0447(19) 0.0859(31) 0.0344(20) 0.0518(23)
c 0.0694(67) 0.0694(67) 0.1638(202) 0.0347(33) 0 0
o) 0.0186(18) 0.0186(18) 0.0492(47) 0.0093(9) 0 0
o(5) 03552(399)  0.0637(150)  0.2453(246)  0.1348(228)  -02712(289)  -0.0949(181)
0(6) 02137(1221)  0.1077(257)  0.3833(1336)  0.0766(554)  0.2621(1194)  0.1355(588)
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[ Table 2.13 Interatomic distance and bond angle of CAp.

Phosphate tetrahedron
P(a)-O(1a) 0.1524 (9)
P(2)-O(22) 0.1524 (6)
P(a)-O(3a) 0.1552 (4)
P(b)-O(1b) 0.1535 (11)
P(b)-O(2b) 0.1505 (16)
P(b)-O(3b) 0.1486 (12)
0O(1a)-P(a)-O(2a) 112.38 (38)
O(1a)-P(a)-O(3a) 113.13 (30)
. 0(2a)-P(2)-O(32) 104.35 (30)
0(32)-P(2)-O(32) 108.79 (29)
O(1b)-P(b)-O(2b) 110.55 (54)
O(1b)-P(b)-O(3b) 109.03 (57)
0(2b)-P(b)-O(3b) 111.25 (83)
Fig. 2.26 The atomic configuration in CAp projected on the O(3b)-P(b)-O(3b) 105.58 (85)
(010) plane. Six equivalent positions of CO; in a unit
cell were statistically occupied by one CO; ion. O(1a)-O(2a) 0.2533 (1 1)
0(22)-0(32) 0.2429 (6)
0(32)-0(12) 0.2566 (9)
0(3a)-0(3a) 02523 (5)
O(1b)-O(2b) 0.2498 (21)
0(2b)-O(3b) 0.2469 (10)
0(3b)-O(1b) 0.2460 (13)
0(3b)-0(3b) 0.2367 (5)

Carbonate triangle

C-0(4) 0.1275 (14)
C-0(5) 0.1263 (16)
C-0(6) 0.1269 (21)
a 0(4)-C-0(5) 120.44 (75)
0(5)-C-0(6) 119.52 (130)
Fig. 2.27 The atomic configuration in CAp projected on the O(6)-C-O(4) 120.02 (86)
(001) plane. Six equivalent positions of CO; in a unit
cell were statistically occupied by one COj; ion. Ca(2) triangle
e Ca(2a)-Ca(2a) 0.4166 (4)
i DEEATZ COuA A > ORIBARENT 5, Th
BT Ol CO, 14 > D Ca(2b)-Ca(2b) 04195 (3)
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Fig. 2.28 Combination patterns of CO;-CO; pair in the A site.
Triangles represent CO; ions. Existence of pattern (e)

or (f) is implausible.
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Fig. 3.1. Schematic drawing of bone remodeling. Osteoblasts
shown in the upper left release collagen and apatite,
and generate bone. Osteoclast shown in the bottom
right dissolve apatite by lowering pH and decompose

collagen by releasing enzyme.
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Fig. 3.2. Schematic drawing of uniaxial-press dehydrator. It
evacuates water from the central hydrate composite
through ceramic filters upper and bottom sides by

pressing.
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Transmission electron micrographs of HAp/Col com-
posites. Conspicuous orientation of HAp and collagen
could not observe in the composite A; however, the
orientation of HAp and collagen was observed in the

composite C contained natural collagen fibers.

Type A Type C Type A(dried)

Type B

Three-point bending strength of HAp/Col composites.
A and C had a similar strength. Bending strength of A
became 3 times larger due to drying in air; therefore, a
dehydration condition effected on the bending strength

of the composite.

| T

-

Type A Type B Type C Type A (dried)

Young's modulus of HAp/Col composites. A and C had

a similar Young’s modulus.

Table 3.1 Relative density and HAp/Col weight ratio of the
composites
composite relative density HAp/Col ratio (wt)
Type A 94 % 80.45/19.55
Type B 68 % 83.62/16.38
Type C 80 % 81.19/18.81

Fig. 3.6.

Toluidine blue stained histological section of HAp/Col
composites 6 months after implantation in beagle’s
back subcutaneous tissue. Composite A degraded from
surface and its phagocytosis was observed. Composites
B and C were encapsulated with fibrous tissue. The
fibrous tissue around composite C was thicker than
that of B.
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Fig. 3.7. Transmission electron micrograph of composite A 6
months after implantation in beagle’s back subcutane-
ous tissue. Phagocytosis of composite A particles

degraded from surface by monocytes was observed.
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Fig. 3.8. Scanning electron micrographs of HAp/Col composites 6 months after implantation in beagle’

s back subcutaneous tissue. Composite A directly bonded with tissues, while fibrous capsule

intervened between composite B (or C) and tissues.
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Fig. 3.9. Schematic drawing of apparatus for synthesis of HAp/
Col composite using simultaneous titration method.
The left vessel contained collagen containing H,PO,
aqueous solution, the right contained Ca(OH), suspen-
sion. These solutions titrated simultaneously in the
central reaction vessel through tube pumps governed
by the pH controller. Reaction temperature was

controlled by water bath.
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Fig. 3.10. Transmission electron micrograph of HAp/Col com-
posite synthesized at pHS8, 40°C. Collagen fiber
elongated from upper left to bottom right. Orientation
of c-axes of HAp nanocrystals along collagen fiber
(arrow) was detected from imposed electron diffrac-

tion pattern.

Table 3.2. Relation between synthesis conditions and self-orga-

nization.
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Fig. 3.11. Three-point bending strength of HAp/Col composites.

The composites synthesized at 40°C in each pH condi-

tions indicated the highest strength.
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Fig. 3.12. Young’s modulus of HAp/Col composites.
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Fig. 3.13. Collagen amount in HAp/Col composite. The values
were normalized to total weight of HAp and collagen
as 1009%.
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Fig. 3.14. Fourier-transformed infrared spectrum of HAp/Col
composite and pure collagen. Red shift of stretching
band from dissociated carboxyl group on collagen was

observed in the composite.
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Fig. 3.15. Transmission electron micrographs of HAp/Col composite particles after different aging time. a: 1,

b: 2, ¢: 3 and d: 6 hours. Growth of collagen fiber and HAp orientation could not detect at 1 hour’

s aging; however, they progressed with increasing in aging time.
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Fig. 3.16. Transmission electron micrographs of HAp/Col composite particles after aged for 3 and 24 hours. Nanocrystals of

HAp grew after 24 hours’ aging as shown in right photo compared to that after 3 hours’ aging, left photo.
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Fig. 3.17. Relation between 3-point bending strength of HAp/Col Fig. 3.18. Relation between collagen amount in HAp/Col com-
composite and aging time. The maximum strength posite and aging time. The values were normalized to

obtained at 3 hours’ aging. total weight of HAp and collagen as 100%.
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Fig. 3.19. Transmission electron micrographs of HAp/Col composite particles cross-linked after aged for 3 hours. Fiber

of collagen became longer and wider; however, orientation of HAp estimated from electron. diffraction was

reduced.
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Fig. 3.20. Relation between 3-point bending strength of HAp/Col Fig. 3.21. Relation between collagen amount in HAp/Col com-
composite and concentration of glutaraldehyde. The posite and concentration of glutaraldehyde. The values
strength increased with adding of a few amount of were normalized to total weight of HAp and collagen
glutaraldehyde. as 100%. Collagen amount in the composite indicated

theoretical value by adding of glutaraldehyde due to

cross linkage effect.
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Fig. 2.22 Angular dependence of polarized IR absorption spectra

by out-of-plane bending vibration (v,) of CO; in CAp.
Solid line: electric vector is parallel to the c-axis,
broken line: electric vector is 45( to the c¢-axis, and
dotted line: electric vector is perpendicular to the ¢

-axis.
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Fig. 2.23 Angular dependence of polarized IR absorption spectra
by in-plane bending vibration () of CO; in CAp. Solid
line: electric vector is parallel to the c-axis, broken
line: electric vector is 45° to the c-axis, and dotted line:

electric vector is perpendicular to the c-axis.

Fig. 2.24 D-Fourier map of the (010) plane for the present CAp
crystal after the refinement for Ca, PO, group without
CO,. The contour is at an interval of 500/nm?. Solid
and broken lines correspond to positive and negative
contours, respectively. Atom positions within 0.03nm

from this plane are given.

n3,HAp (X3.28-b) LEKDE L DEEHE LEHE
B ZF S ILHEBOEESED Shlz, IhiX, FH
DB LY, FIZETORTRICERWEB I S
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Fig. 2.25 D-Fourier map of the (010) plane for the present CAp crystal after the refinement for Ca, PO, group

and COs. The contour is at an interval of 500/nm?. Solid and broken lines correspond to positive and

negative contours, respectively. Atom positions within 0.03nm from this plane are given.

Fig. 3.26. Tartrate-resistant acid phosphatase stained rat tibia histological sections after implantation of

non-cross-linked HAp/Col composite. Osteoclast-like cells resorped the composite from 5 days

after implantation.
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5 Z L DHERBIE D 50 o 72, REEBOIEND,
IZATH LS BRINE N T ERL oD, EE TR LE
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B3Ipolce iz, 20mm b iz 3 IEH ORERTER I A
MEEBET 2 2 L THEBVBEET 22 Lhs, &
BERIL, BRBFICED 2BEME & LT OEESE
REThirLEZONS,



M AP EHREE 81205

Fig. 3.27. Alkaline phosphatase stained rat tibia histological sections after implantation of non-cross

-linked HAp/Col composite. Osteoblasts formed new bones at surrounding of the composite and

Howship’s lacunae created by osteoclast-like cells from 7 days after implantation.

Fig. 3.28. Hematoxylin and eosin stained rat tibia histological sections at 4 weeks after implantation of surface

cross-linked HAp/Col composite (a) and porous HAp (b). Resorption of the composite was not

observed; however, direct bonding between the composite and bone tissue was observed and indicat-

ed highly bioactivity, the same as porous HAp.

3.1. 6 #@&

KETIX, KBTI A N aA7—F OEEKE,
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BElEMtRREL LI E 25, EBREBEGICB VT,
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B EMHLNE RS,

HAKO BCHEMBILREE, ——Y > 7o TR
EL, £/, ZHBAOTIMCL > CTHESNZ Z LD

S otz
"FonEEEOBEMME & BHEBKIGZ T &
23, REBORE L T —Y >V IBICEBEIMZ -5
BTRBVET) Y72y bEERLT, BREL
Rk &, ZDRFICERFEVERI 5 2 L2855
potz, iz, REZEEICEBL, RNBEShZ
o lARTY, WMERRKRE T, EROBHMME
TH5 HAp LAEREIZ, B OEEEENRD ohlz,
bz &, KEEKIE, BREBCED 2BHEM
e LTCOBRICHVARETH S L FEZ N 5,
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Fig. 3.29. Naked eye observation of beagles’ tibiae and HAp/Col implants at 12weeks’ after operation. a: non

-cross-linked and b: cross-linked composites. Non-cross-linked composite almost resorbed and

cannot detect; while resorption and decomposition of cross-linked composite delayed and the

composite clearly detect in newly formed bone.

BEF

BYERI, HEERERARFEAEIOMNEH—
B - PEEIE—ERBITF, [EEEMETETEROEA
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Wiz &9,

3.2 Nucleation of Hydroxyapatite Crystal
through Chemical Interaction with Col-
lagen®®

3.2.1 Introduction

The composition of human bone is a well-known
inorganic/organic hybrid consisting of 70%
hydroxyapatite (HAp) and 30% organic (largely
collagen) constituents, by weight?”. Under in vivo
condition, HAp crystals are nucleated on collagen
fibers with a preferred orientation, i.e., the crystal-
lographic @ [1210] and ¢ [0001] axes are aligned
perpendicular and parallel to the collagen fiber
axis, respectively®®. This means that the nucleation
of HAp crystals on collagen fibers occurs through
chemical interactions between HAp crystals and
collagen fibers.

The collagen in bone comprises a ropelike
arrangement of three noncoaxial, helical polype-
ptides rich in glycine, proline, hydroxyproline, and
alanine. The small glycine side-chains at every
third amino acid allow close packing of the polype-

ptides. This structure is stabilized by a hydrogen
bond between the hydrogen atom (attached to the
electropositive nitrogen atom of each peptide lin-
kage) and the electronegative carboxyl oxygen
atom of the fourth amino acid on the amino-termi-
nal side of the helix. The polypeptide backbone,
therefore, is tightly wound around the long axis of
the molecule, and the side-functional groups of the
amino acid residues protrude outward from the
helical backbone so that they can easily bind oppo-
sitely charged ions through coulombic attrac-
fion#=29,

In this experiment, the nucleation of HAp crys-
tals on collagen fibers was reexamined with the
main focus on the chemical interaction between the
carboxylate group in the amino acid residues of the
collagen and the calcium ion. Negatively charged
carboxylate groups are suggested to have an ability
to bind calcium ions and induce the nucleation of
bio-minerals®*=*®. To examine the nucleation mech-
anism of HAp crystals on collagen, a collagen
membrane was soaked into 1.5 SBF solution, forc-
ing the nucleation of HAp crystals. The chemical
interaction between the collagen and the HAp
crystals was assessed by the chemical shift of the
carboxylate band of collagen from the Fourier-
transform infrared spectrometry (FTIR) results
after the formation of HAp crystals®”, and compar-
ed with the computed bond orders of the carbox-
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ylate group before and after binding a calcium ion,
which emulated the first step of the nucleation of

HAp crystals on collagen.

3. 2. 2 Experimental Procedure

Supersaturated simulated body fluid (1.5 SBF)
solution®”, which has 1.5 times higher ion concen-
trations than the SBF solution, with ion concentra-
tions close to human blood plasma®®, was prepared
by dissolving reagent grade NaCl, NaHCO,; , KCI,
K,HPO,+-3H, O, MgCl,+6H,0, CaCl, and Na,SO, in
ion-exchanged distilled water. The solution was
buffered at pH 7.4 with tris(hydroxymethyl)
aminomethane and 1M HCI at 36.5°C.

The collagen membrane used in the experiment
was made from bovine skin and had a molecular
weight of 300,000 (Nitta Gelatin, Inc., Osaka,
Japan). The collagen membrane lcm X lcm X 0.lcm
in size was immersed in 30 ml of the 1.5 SBF
solution for 4 weeks at 36.5°C. After soaking, the
specimen was removed from the fluid and gently
rinsed with ion-exchanged distilled water, and then
dried at room temperature. Hereafter, the speci-
mens as-received and soaked in the 1.5 SBF for 4
weeks are referred to as specimens A and S, respec-
tively.

The surface microstructures and crystals of the
materials that formed on the collagen membrane
were analyzed by scanning electron microscopy
(SEM) and thin-film X-ray diffractometry (TF-
XRD; Model RINT2000, Rigaku Co., Tokyo, Japan)
with an angle of 1° to the direction of the incident X
-ray beam. FTIR transmission spectroscopy
(Model Spectrum 2000, Perkin-Elmer Co., Nor-
walk, CT) was measured using CaF, substrates
with a resolution of 0.5cm™".

Bond orders of the carboxylate group with full
geometry optimization of the energy gradients
were determined using the local density functional
(LDF) approach®**” within the DMOL 3 program
(Molecular Simulations, Inc., San Diego, CA). As a
model cluster, an acetate (CH;COO-) molecule,
with and without a binding calcium ion, was used to
emulate the first-step nucleation of HAp crystals
on the carboxylate group of collagen. The basis set

and functional used in the calculation were DND
(double numerical+d) quality (which is compa-
rable to a Gaussian 6-31G* basis set) and VWN
(Vosko-Wilk-Nusair)®*®, respectively.

3. 2.3 Results and Discussion

Figure 3.30 shows the microstructures of the
specimen obtained after soaking in the 1.5 SBF
solution at 36.5°C for 4 weeks. Figure 3.30 (a) shows
that a few HAp crystals were observed to occur
mostly on the edge-side of the collagen membrane
(especially the fiber-side), while they could hardly
be observed on the surface-side.

Figure 3.30 (b) shows a detailed microstructure
of the fiber-side in Fig. 3.30 (a), and it is noted that
the nucleation of HAp crystals was initiated from
the surface of the collagen fiber, leading to the

conjecture that there are some types of chemical

Fig. 3.30. Microstructures of the collagen membrane soaked in 1.
5 SBF solution for 4 weeks at 36.5°C: (a) low and (b)

high magnification.
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interactions between the HAp crystals and collagen
fibers.

Figure 3.31 shows the TF-XRD results of the
specimens A and S. The broad peak due to the
collagen membrane was observed only in the 24
range of 12°-25° in specimen A, while several HAp
peaks denoted by H were observed in specimen S.
Because the HAp peaks were comparatively
broader than a normal HAp specimen, it was con-
sidered that the HAp crystals grown had low
crystallinity or small crystallite size.

Figure 3.32 shows the results of infrared spectros-
copy measurements on the collagen membrane
before and after soaking in the 1.5 SBF solution for
4 weeks. The as-received collagen membrane
showed the symmetrical stretching mode of a
(COO)- ion at 1338cm™!. After the nucleation of
HAp crystals on the collagen membrane, however,
the stretching mode of a (COO) - ion showed at 1334
cm~!, with the stretching mode of a (PO,)%" ion at
1020 and 954cm™!, and the out-of-plane mode of a
(CO,4) % ion at 873cm~*. Therefore, the crystal that
formed on the collagen membrane was a carbonate
-containing HAp crystal, and the red shift of the
carboxylate band suggests that there was a chemi-
cal interaction between the carboxylate group of
the collagen and the nucleated HAp crystals.

Table 3.3 shows the calculated bond orders®” of

the carboxylate group before and after binding a

calcium ion, which emulated the first-step nuclea-
tion of HAp crystal on the carboxylate group of
collagen. The results show that when a calcium ion
is bound to the carboxylate group, the positively
charged calcium ion makes new chemical bonds
with the two oxygen ions of the carboxylate group,
resulting in the decrease of the C=0 bond order
(decreased from ~1.76 to ~1.51). This result fits
well with the red chemical shifts of the carboxylate
band of collagen in the FTIR measurements after
formation of the HAp crystals (Fig. 3.32).

The results indicate that the nucleation of HAp
crystals on collagen in the 1.5 SBF solution is
critically dependent on the carboxylate group of

collagen, which, in turn, depends on the charged
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Fig. 3.32. FTIR spectrometry transmission spectra for the col-

H 1 i ¢ ) .
Specimen S agen membranes before and after soaking in 1,5 SBF
solution.
§ Table 3.3 Calculated bond orders of carboxylate group before
; and after binding a calcium ion.
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functional groups that exist on the surface of col-
lagen. In fact, there are several charged or polar
functional groups in the collagen, i.e., negatively
charged residue groups (aspartate and glutamate
of the carboxylate group), positively charged resi-
due groups (lysine, from the second amino group),
arginine (guanidino group), and histidine (imid-
azole group). The polar but uncharged residue
groups are serine and threonine (hydroxyl group),
and methionine (sulfur atom). Besides the carbox-
ylate group, the confirmation of the chemical shifts
could hardly be detected via FTIR because of
overlapping with other functional groups, which
resulted from the HAp crystals. However, the possi-
bility that these charged or polar groups partici-

pate in the nucleation of HAp crystals cannot be

excluded. There have been several suggestions that
phosphoprotein, amine salt, and the carboxylate
group offer the nucleation sites for HAp crystal
through binding oppositely charged ions, such as

calcium and phosphate3®3149,

3. 2.4 Conclusions

The nucleation of HAp crystal through the chem-
ical interaction with collagen was examined. When
a collagen membrane was soaked in supersaturated
simulated body fluid (1.5 SBF) solution for 4
weeks, a few HAp crystals were formed, mostly on
the edge-side of collagen membrane, and the car-
boxylate band of collagen showed a red chemical
shift. These results coincided well with the decrease
of calculated bond orders of the carboxylate group
when chelated with a calcium ion, which emulated
the first step nucleation of HAp crystal on the
carboxylate group of collagen. Therefore, the
results suggest that the nucleation of HAp crystals
on collagen membrane in a 1.5 SBF solution is
critically dependent on the carboxylate group of a

collagen membrane.

Acknowledgment
The authors thank Nitta Gelatin, Inc., for donat-

ing the collagen membrane.

3.3 Hydroxyapatite Coating on a Collagen
Membrane by a Biomimetic Method*?

3. 3.1 Introduction

Guided bone regeneration (GBR) or guided tissue
regeneration (GTR) techniques have been recently
used to heal soft- and hard-tissue defects, and
promising results have been obtained.*?=*® In gen-
eral, bioresorbable or biodegradable materials —
e.g., collagen*?, polytetrafluoroethylene (PTFE)*®,
or aliphatic polyesters (such as poly(glycolic
acid)*? and poly (lactic acid)*® membranes)—
have been frequently used for GBR. However, it is
well-known that the composition of human cortical
bone is ~70 wt% mineral (hydroxyapatite, HAp)
and ~30 wt9% organic (largely collagen) ?”. As a
consequence, many at-tempts have already been
made to develop an artificial bone composed of a
HAp-collagen composite!®*¢-52: this artificial bone
is expected have properties that are quite similar to
those of human bone. However, there has been no
attempt to develop it as a membrane, (i.e., GBR
material).

In the present investigation, a HAp-collagen
composite membrane has been made via a

biomimetic method, with the aid of citric acid in a

‘simulated body fluid (SBF) solution. The citric

acid, as well as the SBF solution, are known to be
bio-compatible; i.e., the constituents of the SBF
solution are very similar to human blood plasma’®
and the citric acid exists as citrate in the mineral
portion of the human skeleton®®. Therefore, the
SBF solution with citric acid can mimic the gentle,
in vivo conditions for synthesizing the HAp-col-
lagen composite membrane. In this experiment,
citric acid was observed to have a very good ability
to induce HAp formation on a collagen membrane,
although it has been known to be an inhibitor to the
formation of calcium phosphates, because of its

strong chelation ability with the calcium ion®®,

3. 3. 2 Experimental Procedure

An SBF solution that had an ionic concentration
that was 1.5 times higher than that of the SBF
solution with ion concentrations close to human
blood plasma (1.5SBF), as shown in Table 3.4, was
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Table 3.4. Ionic Concentrations of SBF and 1.5SBF Solutions, in

Comparison with Those of Human Blood Plasma

Concentration (mM)
Na* K* Ca* Mg* HCO; CI¥ HPOZ SOF
Bloodplasma 1420 50 25 15 270 103.0 10 0.5
SBF 1420 50 25 15 42 1480 1.0 0.5
1.58BF 2139 75 38 23 63 2230 15 0.75

prepared by dissolving reagent-grade NaCl,
NaHCO;, KCl, K,HPO,+-3H,0, MgCl,+6H,0, CaCl,,
and Na,SO, in ion-exchanged distilled water. The
solution was buffered at pH 7.4 with tris(hydrox-
ymethyl) aminomethane ((CH,OH); CNH,) and
1M HCI at 36.5°C. Citric acid (Wako Pure Chemical
Industries, Ltd., Osaka, Japan) was dissolved in the
1.5SBF solution to give a concentration of 1mM,
and the pH was readjusted to 7.4 by using (CH,
OH) ;CNH.,.

A collagen membrane (Nitta Gelatin, Osaka,
Japan), which was made from bovine skin and had
no HAp forming ability in the SBF solution, was
used in this experiment. The molecular weight was
30,000 and there was no chemical bridge among
molecules (i.e., no hole zone). The dimensions of
the used membrane were lem X lcm X 0.lcm. The
collagen membranes were immersed in 30ml of 1.
5SBF solutions without and with citric acid and
soaked for 1 week at a temperature of 36.5°C.
Hereafter, the specimens obtained through the 1.
5SBF solutions without and with citric acid will be
called specimens B and C, respectively. After soak-
ing, the specimens were re-moved from the fluid
and gently rinsed with ion-exchanged distilled
water 5 times and then dried at room temperature.

The surface microstructures, phases, and func-
tional groups of the collagen membranes were
analyzed via scanning electron microscopy (SEM),
thin-film X-ray diffractometry (XRD) (Model
RINT2000, Rigaku Co., Tokyo, Japan) with an
angle of 1° to the direction of the incident X-ray,
and Fourier-transformed infrared (FT-IR) trans-
mission spectroscopy (Model Spectrum 2000, Per-
kin-Elmer, Norwalk, CT) by using a CaF, sub-
strate. The concentration changes of calcium and
phosphorus in the 1.5SBF solutions after soaking

were measured by using inductively coupled

plasma-atomic emission spectroscopy (ICP-AES)
(Model UOPs-2S, MARK II, Kyoto-koken Co.,
Kyoto, Japan).

3. 3. 3 Results and Discussion

Figure 3.33 shows the microstructures of speci-
mens B and C, obtained after soaking in the 1.5SBF
solutions at 36.5°C for 1 week. This figure clearly
shows that only collagen fibers of the membrane
were observed in specimen B. In specimen C, how-
ever, many spherulites were observed (Fig. 3.34),
and these spherulites contain a larger number of
tiny flakes. The micro-structure of the deposited
HAp crystals was quite similar to that deposited on
bioactive glass or glass-ceramics in SBF solu-
tions®®.

Figure 3.36 shows the thin-film XRD results of
specimens B and C. The broad peak due to the
collagen membrane was only observed in the 24

range of 12°-30° in specimen B. In addition to this

Fig. 3.33. Microstructures of (a) specimen B and (b) specimen C
soaked in 1.5SBF solutions for 1 week at 36.5°C.
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Fig. 3.34. Detailed microstructure of specimen C soaked in 1.
5SBF solution for 1 week at 36.5°C.
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Fig. 3.35. Thin-film XRD results for specimens soaked in 1.5SBF

solutions for 1 week at 36.5°C.

peak, however, several HAp peaks (denoted by

“A”) were observed in specimen C. The broadness
of the apatite peaks may be a result of low crystal-
linity or the small crystallite size of HAp.

Figure 3.37 shows the results of FT-IR spectros-
copy measurements on specimens B and C. For
specimen C, strong p; and weak p, peaks, which
denoted the stretching mode of the (PO,)3" ion,

were observed at 1020 and 954cm™!

, respectively. A
1. peak, which denoted the stretching mode of the
(COs) -

fore, the HAp crystal that formed on the collagen

ion, was also observed at 876cm™!. There-

membrane was carbonate - containing hydrox-
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Fig. 3.36. FT-IR transmission spectra for specimens soaked in 1.
5SBF solutions for 1 week at 36.5°C.
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Fig. 3.37. Schematic illustration for the formation of HAp
embryo with the aid of citric acid in simulated body
fluid (SBF).

yapatite. However, HAp peaks were virtually
absent from the spectra of specimen B.

The elemental-concentration changes of calcium
and phosphorus in the SBF solution, after soaking
for 1 week at 36.5°C, are given in Table 3.5. In
specimen B, the concentrations of calcium and
phosphorus decreased by ~99% and ~79, with
respect to the original concentrations of 150 and 46
ppm before soaking, respectively. In specimen C,
these concentrations de-creased by ~40% and
~579%, respectively. Therefore, the appreciable
decrease in the calcium and phosphorus concentra-
tions of specimen C can be attributed to the forma-
tion of HAp layers on the surface of the collagen
membrane. On the other hand, in specimen B, a

very small decrease of calcium and phosphorus has
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Table 3.5, ICP-ES Results on Specimens Soaked in 1.5SBF
Solution for 1 week at 36.5°C

Elemental concentration (ppm)

Specimen Calcium Phosphorus
B 137.34£1.02 43.05+1.16
C 90.21 £1.36  20.08 +0.35

occurred, which indicates that the formation of
HAp is extremely slow without citric acid.

From these results, it can be presumed that the
formation of HAp on a nonbioactive collagen
membrane is critically dependent on the addition of
citric acid in the SBF solution. For the explanation
of HAp formation observed in this work, the nu-
cleation model based on the chelation of the cal-
cium ion with citric acid is believed to be appropri-
ate, because calcium-ion binding is believed to be
an initial step for the formation of calcium phos-
phates®”,

Citric acid (C;H:0;), which has three carboxyl
groups in its molecule, is ionized to the (CsHs0;)3"
(c¢it) form® by the loss of hydrogen ions (pK;=6.
40) in the SBF solution (pH=7.4). Negatively
charged citric acid will chelate the calcium ions in
the SBF solution and form the Ca-cit complex.
Then, a cluster of critical size can be formed by
adsorbing the calcium and phosphate ions and
other citric acids on the Ca-cit complex three-
dimensionally, and the clusters may act as nuclei
for the crystal growth of HAp, as schematically
shown in Fig. 3.37. After the nucleation, HAp crys-
tals can grow spontaneously, because the SBF
solution is already supersaturated, with respect to
the HAp®?. Therefore, in specimen B, the embryos
of HAp could not grow to the critical size and act
as nuclei, because of the large surface energy in the
SBF solution. However, in specimen C, large clus-
ters of HAp were formed with the aid of citric acid
and these HAp clusters may act as the nucleation
site for further growth of the HAp crystal in the
SBE solution.

The results suggest that a carbonate-containing
HAp coating on the nonbioactive collagen mem-
brane can be obtained with the aid of citric acid in
the 1.5SBF solution. The growth mechanism of

HAp crystal on the collagen membrane was
biomimetic, and the environment of synthesis was
very gentle. The dependence of citric acid concen-
tration for the HAp formation is under investiga-

tion and will be published in the near future.

3.3.4 Summary

This investigation has shown that HAp-collagen
composite membrane can be made in a simulated
body fluid (SBF) solution with the aid of citric
acid. When the collagen membrane was soaked in
an SBF solution with an ionic concentration that
was 1.5 times that of SBF solution that was similar
to human blood plasma (1.5SBF) without citric
acid, no HAp crystals formed on the surface.
However, when the collagen membrane was soaked
in the 1.5SBF solution with 1mM of citric acid,
carbonate-containing HAp crystals formed. There-
fore, the results suggest that citric acid has a nu-
cleating ability and can accelerate the coating of
carbonate-containing HAp crystals on a non-

bioactive collagen membrane.

Acknowledgment
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collagen membrane and Dr. D. Walsh for the help-
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3.4 Hydroxyapatite formation on cellulose
cloth induced by citric acid®®

3. 4.1 Introduction

Simulated body fluid (1.0 SBF) was designed to
test the bioactivity of artificial bone material in-
vitro because its composition is very close to
human blood plasma®. The SBF solution (1.5
SBF) with ion concentrations 1.5 times that of 1.0
SBF also has been used for coating of hydrox-
yvapatite (HAp) on the surface of bioinert materials
with artificially introduced surface functional
groups that have an ability of inducing the HAp
nucleation in SBF solutions. Such functional groups
are, for example, silanol group® %9, phosphite
group® %, or sodium titanate hydrogel layer® 7%
introduced by treatment with CaO-SiO, glass pow-

der, urea/H,PO, solution, or strong alkaline solu-



e BT eSS 81205

tion (NaOH), respectively. The procedures for
treatment, however, are so complicated or severe
that the applications have been very limited.

In the present experiment, a simple coating
method of HAp on bioinert cellulose cloth with the
aid of citric acid in 1.5 SBF solution was examined.
Since the citric acid has a strong chelating ability
of calcium ions to its carboxylate groups, it is
believed to induce HAp nucleation in 1.5 SBF solu-
tion*. Besides, citric acid exists in fresh wet bone
in the form of citrate®® and is involved in the citrate
cycle in the body, it can mimic and offer gentle in-
vivo conditions for synthesizing the HAp. Cellulose,
made by polymerization of glucose, is a cheap and
readily available material to employ, though no
apatite forming ability in SBF solutions; it has one
kind functional group (OH) which cannot directly
induce HAp nucleation due to the absence of net
charge®. Therefore, citric acid was used as a
nucleating agent for HAp crystals on cellulose
cloth. The hydroxyl group of citric acid may bond
to the hydroxyl group in the cellulose through
hydrogen bonding and can induce the HAp parti-

cles on it5%577L72),

3. 4. 2 Experimental procedure

The SBF solution (1.5 SBF) which has 1.5 times
higher ion concentrations than the SBF solution
with ion concentrations close to human blood
plasma, as shown in Table 3.4 was prepared by
dissolving reagent grade NaCl, NaHCO;, KCl, K,
HPO,*3H,0, MgCl,-6H,0, CaCl,, and Na,50, in
ion exchanged distilled water. The solution was
buffered at pH 7.4 with tristhydroxymethyl)
aminomethane ((CH,OH),CNH,) and 1M hydroch-
loric acid (HCI) at 36.5°C. Citric acid (Wako Pure
Chem. Ind. Ltd, Osaka, Japan) was dissolved into
the 1.5 SBF solution to give a concentration of
1ImM and pH was readjusted with tris(hydrox-
ymethyl) aminomethane to 7.4.

Cellulose cloth (Bemcotlabo, Asahi
Osaka, Japan), which consists of 100% cellulose,

Kasei,

lint free, and no HAp forming ability in SBF solu-
tion, was used in this experiment. Cellulose cloths

with a dimension of 1 X 1 X0.1cm3 were immersed

in 30 ml of 1.5 SBF solution with and without citric
acid and soaked for 1 week at 36.5°C. Hereafter, the
specimens obtained through the 1.5 SBF solutions
with and without citric acid will be referred to as C
- and B-specimens, respectively. After soaking, the
specimens were removed from the fluid and gently
rinsed with ion exchanged distilled water and then
dried at room temperature.

The surface microstructures, phases and func-
tional groups of the cellulose cloths after soaking in
1.5 SBF solution were analyzed by scanning elec-
tron microscopy (SEM), thin-film X-ray dif-
fractometry (XRD, Model RINT2000, Rigaku Co.,
Tokyo, Japan) with an angle of 1° to the direction
of the incident X-ray, and diffuse reflectance of
Fourier-transformed infrared (FT-IR) spectros-
copy (Model Spectrum 2000, Perkin-Elmer Co.,
Norwalk, U.S.A.). For IR spectroscopy measure-
ments, the pulverized specimens were diluted with
KBr powder by one tenth and the background noise
was corrected with pure KBr data. The concentra-
tion changes of calcium in 1.5 SBF solutions before
and after soaking were measured with inductively
coupled plasma atomic emission spectroscopy (ICP
-AES) (Model UQOPs-2S, MARK II, Kyoto-koken
Co., Kyoto, Japan).

3. 4.3 Results and discussion

Fig. 3.38 shows the microstructures of B- and C-
specimens obtained after soaking in 1.5 SBF solu-
tions at 36.5°C for 1 week. In the B-specimen, only
fibers of the cellulose cloth were observed. In the C
-specimen, however, many spherulites, which con-
tain a large number of tiny crystals, deposited on
the surface of cellulose cloth were observed. The
microstructure of the HAp crystals was quite simi-
lar to that observed on the bioactive glass or glass
~ceramics in 1.0 SBF solutions® -7, In the case of
1.0 SBF solution with the same amount of citric
acid, however, no HAp formed on the surface of
cellulose cloth. The differences of HAp forming
abilities between 1.0 SBF and 1.5 SBF with citric
acid may come from the degrees of supersaturation
between the two solutions.

Fig. 3.39 shows the thin—film XRD results of B-



V) UEEIREEA VY 7 AT B HTSE

Fig. 3.38. Microstructure of the (a) B- and (b) C-specimens
soaked in 1.5 SBF solutions for 1 week at 36.5°C.
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Fig. 3.39 Thin-film XRD results for the specimens soaked in 1.5
SBF solutions for 1 week at 36.5°C.

and C- specimens. The broad peak due to the
cellulose cloth was only observed in the 2§ range of
15°-35° in the B-specimen. However, several HAp
peaks denoted by A were observed in the C-speci-

men. The broadness of apatite peaks may result

from low crystallinity or small crystallite size of
the HAp.

Fig. 3.40 shows the results of IR spectroscopy
measurements on the B- and C-specimens. For the
C-specimen, the stretching modes of (PO,)* ion
were detected at 1048, 604 and 568cm ™. The stretch-
ing and out of plane modes of (CO;)?~ ion were also
observed at 1419 and 878cm™!, respectively. It
means that PO, sites of HAp structure, 7.e. B-site,
were partly substituted by carbonate ions. The
HAp crystal, therefore, which formed on the cellu-
lose cloth was carbonate containing hydrox-
yapatite. However, HAp peaks were virtually
absent from the spectrum of the B-specimen.

The elemental concentration changes of calcium
in the 1.5 SBF solutions before and after soaking
for 1 week at 36.5°C were detected by ICP-AES. In
the B- and C- specimens, the concentrations of
calcium decreased by approximately 3% and 44%
to 137.3%+1.1 and 79.1%0.5 ppm, respectively, with
respect to the original concentration of 141.9+1.0
ppm before soaking. The appreciable decrease in
calcium concentration of the C-specimen can there-
fore be attributed to the formation of HAp particles
on the surface of the cellulose cloth. On the other
hand, in the B-specimen, a small decrease of cal-

cium concentration has occurred, which indicates

B-specimen
F
8
Q
o
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bl .
= C-specimen
=
&
=
o
[
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Fig. 3.40. FT-IR transmission spectra for the specimens soaked
in 1.5 SBF solutions for 1 week at 36.5°C.
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that the formation of HAp is extremely slow with-
out citric acid.

From these results, it can be presumed that the
formation of HAp on the non-bioactive cellulose
cloth is critically dependent on the addition of citric
acid in 1.5 SBF solution. For the explanation of
HAp formation observed in this work, the nuclea-
tion model based on the chelation of calcium ions
with citric acid is believed to be appropriate
because calcium ion binding is believed to be an
initial step for the formation of calcium phos-
phates®76-79),

Citric acid (C¢Hz0,), which has a hydroxyl and
three carboxyl groups in its molecule, may adhere
to the cellulose surface through hydrogen bonding
between two hydroxyl groups in citric acid and
cellulose cloth, respectively, and it is ionized to the
(CeHs0,)3 (cit) form® by the loss of hydrogen
ions (pK;=6.40) in 1.5 SBF solution (pH=7.4),

according to the following reaction:

CH,COOH CH,COO~
| |
HO - C- OOH—+ HO—C—COO~+3H* (1)

I |
CH,COOH CH,COO0~

Negatively charged carboxylate headgroups will
bind calcium ions®? in 1.5 SBF solution and form a
Ca~-cit complex at the cellulose fiber surface. Then,
a cluster of critical size can be formed by adsorbing
calcium, phosphate ions and other citric acids on
the Ca-cit complex three-dimensionally and the
clusters may act as nuclei for the crystal growth of
HAp as schematically shown in Fig. 3.41. After
nucleation, HAp crystals can grow spontaneously,
because the 1.5 SBF solution is already supersatur-
ated with respect to the HAp®®. In the B- specimen,
therefore, HAp embryos of the critical size could
not be formed and the growth of nuclei could not be
energetically favored due to the absence of calcium
binding site. In the C-specimen, however, large
clusters of HAp could be formed with the aid of
citric acid and these HAp clusters may act as the
nucleation site for further growth of HAp crystals

Na+ K+

C a2+

Mg?+ CI
PO, COz*

SO
OH:

'

\O
I

A
o
I

Cellulose

Fig. 3.41. Schematic illustration for the formation of HAp

embryo on cellulose with the aid of citric acid in SBF.

in the 1.55BF solution.

The results suggest that HAp nucleation on the
non- bioactive cellulose cloth can be obtained with
the aid of citric acid in 1.5 SBF solution. The
bonding strength, however, between HAp particles
and cellulose cloth may not be strong enough
because they might be bonded through weak hydro-
gen bonding. The growth mechanism of HAp crys-
tals on the cellulose cloth, however, was a
biomimetic, the environment of synthesis was very
gentle, and the procedure was simple compared
with other methods to coat the HAp on bicinert
materials. This method is believed to be applicable
to other polysaccharides, such as chitin, which is

biodegradable and non-toxic in-vivo.

3. 4.4 Conclusions

This investigation has shown that HAp nuclea-
tion on cellulose cloth can be made in 1.5 SBF
solution with the aid of citric acid. When cellulose
cloth was soaked in 1.5 SBF solution without citric
acid, HAp crystal growth was absent. When cellu-
lose cloth was soaked in 1.5 SBF solution with 1mM
of citric acid, however, HAp crystals formed. The
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results therefore suggest that citric acid has a
nucleating ability and can accelerate the nucleation

of HAp crystals on non-bioactive cellulose cloth.
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3.5 Preparation of Porous Hydroxyapatite/
Collagen Nanocomposites®*s?

3.5.1 Introduction

In section 3.1, the HAP-embedded synthetic bone
has been prepared using a biomimetic coprecipita-
tion method. Until now we could attain the accept-
able bone strength through the densification using
cold isostatic press. In this study we'd like to
manufacture a porous bone, which may be used in
the substitutes of the soft bone such as hip joint.
Porous HAp/collagen nanocomposites were pre-
pared on the basis of the biomimetic method, com-
bined with a cross-linkage process with glutaralde-
hyde.

3.5.2 Materials and Method

The slurry of HAp/collagen nanocomposites was
prepared by the coprecipitation method?®, 99.7mM
of Ca(OH) , suspension and 59.7mM of H,PO, aque-
ous solution were gradually added into a reaction
vessel through the respective tube pumps; collagen
was beforehand added in the H;PO, solution for the
weight ratio of final HAp/collagen composites to
be 80/20. The temperature and pH in the reaction
vessel were set at 38°C and 8.4, respectively. After
the coprecipitation process, the slurry obtained was
aged at 38°C for 12h; then, pH lowered gradually to
7.0. An aqueous solution of glutaraldehyde (0.2%)
was slowly dropped into the slurry solution at 38°C;
the molecule number of glutaraldehyde was
regulated to be 30, 90, 300 or 600 per collagen
molecule; the samples obtained are hereafter denot-
ed by HCG30, HCG90, HCG300 and HCG600, respec-

tively. Further, a pure collagen and a HAp/col-

lagen composite without cross-linkage are ab-
breviated as COL and HAP/COL, respectively. The
cross-linkage took place among the aldehyde
groups of glutaraldehyde and the free amine groups
of lysine or hydroxylysine that exist on the amino
acid residues of collagen’s polypeptide chain. After
lthe cross-linkage, the HAp/collagen composite
slurry was filtered using a glass filter and gently
washed five times with ion-exchanged water. The
precipitate obtained was dried at 30°C under vac-
uum in a freeze dryer (Advantage, Virtis, USA), or
naturally dried in the air at 25°C.

3. 5.3 Result and Discussion

Figure 3.42 shows the SEM photographs of the
samples prepared. Fig. 3.42(A) shows a well-
known porous network structure of collagen. Fig.3.
42 (C) is the microstructure of a freeze-dried
HCG30, and Figs.3.42(B) and (D)-(F) those of
naturally dried samples. Peculiar pore structures
could be found for the cross-linked samples; though
pores were randomly distributed in the freeze dried
sample (C), a channel structure with a spacing of
about 100 m were found parallel to a glass filter
plane in the naturally dried samples (D, E). As
many open pores were found in the plane (B) which
was perpendicular to the planes (D, E), it was
considered that the open pores formed columnar
channels in matrices. In a higher magnified struc-
ture (F), many small pores were observed in the
channels; therefore, the open channels probably
formed a 3-dimmensional network.

Glutaraldehyde (OHCCH,CH,CH,CHO) has two
functional groups (-CHO) to be able to link with ¢
-NH, groups of lysine or hydroxylysine residues in
collagen. It is known that all available free amine
groups react with glutaraldehyde to form Schiff’s
bases within 5 minutes. A collagen molecule of type
I has approximately 3,000 g-amine groups. When
glutaraldehyde was added into the composite slurry
during the preparation process, the size of
precipitated particles was found to grow. Accord-
ing to Kikuchi et al®, such precipitated particles
formed the assembly in which many HAp nanocrys-

tals of about 50nm in size were aligned around
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Fig. 3.42. SEM micrographs for COL(A), HCG30(B), HCG30(C, D) and HCG300 (E,F). (A) and (C) indicate
the freeze dried samples, while (B), (D), (E) and (F) indicate the naturally dried samples. Figure

3.42(B) is a perpendicular section of Figure 3.42 (D).

collagen molecules of 300nm in length, forming
bundles. Therefore, it is considered that the cross-
linkage formed between the bundles of HAp/col-
lagen composites. The color of the HAp/collagen
composite was essentially white, and the color
changed from pale yellow to slightly dark yellow
with the increase in the cross-linkage.

Fig.3.43 shows the FT-IR spectra of HAp/col-
lagen composites; the peaks around at 1340cm™!
were ascribed to an antisymmetric stretching mode
of carboxyl group COO~ in collagen. The peaks
shifted to lower wave number with the number of
cross-linkage for the samples of HCG30 and
HCGY90, while they shifted oppositely for the more
cross-linked samples of HCG300 and HCG600.
Since the red shift of the COO~ stretching mode was
clearly found for the samples in which HAp nano-
crystals were well aligned along collagen mole-
cules, the opposite shift for HCG300 and HCG600
implied that the excess cross-linkage destroyed the
HAp/collagen-aligned structure. The site number
where glutaraldehyde could react in a collagen
molecule, 7.e. the ratio of lysine to all amino resi-
dues, is 5%. This site number corresponds to mole-
cules number of glutaraldehyde per collagen mole-
cule, being in rough agreement with the number of
glutaraldehyde molecules where the red shift was
largest, 7.e. between 30 and 90 molecules. The cross
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......... HCGC30 HARP/COL | 1334

HC G20 1331
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HCG300 1334
HCEC600 1334
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Fig. 3.43. FT-IR spectra of pure collagen (COL), HAP/collagen
composite without cross-linkage (HAP/COL), and
cross-linked HAp/collagen composites (HCG30,
HCGY0, HCG300, HCG600). COL and HAP/COL were
freeze-dried, and cross-linked HAp/collagen compos-

ites were naturally dried in the air.

-linked composite of HCG30 was very flexible in a
wet state similarly to rubber while it became much
strong when dried. Bending strength and Young’s
modulus were 7.7MPa and 120MPa, respectively,
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for the freeze-dried sample, and 16MPa and
580MPa for the naturally-dried sample. Therefore,
the naturally-dried sample had considerably good
mechanical property though it was weaker in com-
parison with a full-dense HAp/collagen composite,
whose bending strength and Young’s modulus were
50Mpa and 3Gpa, respectively.

3. 5.4 Conclusion
HAp/collagen

nanocomposites were prepared with a coprecipita-

In summary, porous
tion method and by controlling the cross-linkage
using glutaraldehyde. The columnar structure in
which rod-shaped bundles were well assembled
was developed with open porous channels of 5-
50ym in diameter. The self-assembly of the colum-
nar structure took place during a slow drying
process, depending on the amount of glutaralde-
hyde. To achieve the development of a porous body
having pore size between 150-200ym, further

improvement is necessary.
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Fig. 41. An HRTEM image of the HAp along [001] direction.

The inlet shows the simulated image of HAp structure.

Fig. 4.2. An HRTEM image of a grain boundary that is parallel
to a (100) plane. The unit cell of HAp structure is

outlined in the micrograph.
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Fig. 4.3. Atomic arrangement models for the {100} interfaces and

corresponding HRTEM simulated images.
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Fig. 4.4. Irradiation-induced damage in a grain oriented along
[001] direction with 200 keV electrons. Thinned and

vitrified regions are roughly hexagonal in shape.
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Fig. 45. Preparation of Langmuir-Blodgett (LB) monolayer

film.
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Fig. 4.6. Thin-film X-ray diffraction patterns of substrates and

LB monolayers soaked in SBF.
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Fig. 4.7. IR reflection specra of substrates and LB monolayers
soaked in SBF.
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Fig. 4.8. SEM images of HAp aggregates grown on the ara-

chidic acid LB monolayer.
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Fig. 4.9. Cross sectional TEM image of an interface between

organic monolayer and induced HAp crystals.
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Fig. 4.10. Electron diffraction pattern from HAp nanocrystallites

near the interface.
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Fig. 4.11. Schematic diagram showing the relationship between
the crystallographic properties of the HAp crystals

and the arachidic acid LB monolayer.
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Fig. 4.12. IR transmission spectra of arachidic acid LB
monolayers soaked in various solutions: (curve a)
before soaking, (curve b) SBF for 1 h,(curve ¢) CaCl,
solution for 1 h, (curve d) NaCl solution for 1 h, (curve
e) CaCl, and Nacl solution for 1h, and (curve f) CaCl,
solution for 1 h and subsequently in K;HPO, solution
for 1h.
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Fig. 4.13. The surface of as-grown HAp single crystal as observed by AFM: (a) directly after the crystal

growth, (b) HAp surface left in the air for 8 days. The bar indicates 200 nm.
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Fig. 414 AFM images and section analysis of HAp surfaces. The surfaces were etched for (a) 3 min, (b) 10

min, (c) 20 min and (d) 30 min by 0.05 N-HCI aqueous solution. The bar indicates 100 nm.
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Fig. 4.15 The surface state of the (100) terraces of HAp single

crystal.
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Fig. 416 AFM image and section analysis of arachidic acid
accumulated on a HAp single crystal. The bar indi-

cates 100 nm.
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Fig. 4.17 The schematic accumulation state of arachidic acid on

a HAp surface.
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4. 4 Effect of citriec acid on the nucleation of
hydroxyapatite in a simulated body fluid

4. 4. 1 Introduction

The interest in the interaction of citrate ions with
calcium phosphate precipitates arises from the
physiological importance of both the compounds.
Citrate is contained in fresh wet bone by about 1
wt9%,*® which nearly corresponds to more than 70
wt% of total citrate content in the body. Further,
the concentration of citrate in bone and blood is
increased with the administration of vitamin D or
parathyroid extract.®® It has been, therefore, con-
jectured that citrate ions play an important role in
bone resorption and/or ossification through the
formation of dissociated calcium citrate complexes

in the surrounding body fluid.?49

On the other hand, citric acid is also known as an
inhibitor of calcium phosphate formation because
of its strong chelation ability with calcium
ion.?®11-4% Therefore, this material can be applied
in biological, medical and industrial fields, e.g., in
eliminating industrial scaling and corrosion, treat-
ing of dental calculus, calcified plaques of atheros-
clerosis, kidney calcinosis and to a lesser extent, in
urinary tract stone diseases. One of the research
goals with regard to citric acid has been conse-
quently aimed at slowing down or even eliminating
the nucleation of hydroxyapatite (HAp) crystals
and their subsequent growth through the presence
of inhibitor compounds.

Collagen is a constituent of mammals’ bone, i.e.,
bonecontains 70 wt% of mineral (HAp) and 30
wt%
lagen) .*~*® Many attempts to develop an artificial

of organic constituents (mainly col-
bone composed of HAp/collagen composite®s—®
have been already performed since the composite is
expected to have quite similar properties to bone. A
membrane of HAp/collagen composite is also con-
sidered to be useful for a guided bone regeneration
(GBR) material for large bone defects. In the pres-
ent investigation, the role of citric acid was
examined with the main focus on the nucleation
ability of HAp crystals on a bioinert collagen
membrane. The nucleation ability was elucidated
as a function of citric acid concentration in a
simulated body fluid (SBF). Though citric acid has
been known as an inhibitor for the formation of
calcium phosphates®®41=*®  our results indicated
that citric acid had very good ability to induce the
HAp formation on a collagen membrane within a

limited concentration range, 0.3-2mM.

4. 4. 2 Materials and methods

An SBF solution (1.5SBF), which had approxi-
mately 1.5 times higher ionic concentrations than
human blood plasma®® as shown in Table 1, was
prepared by dissolving reagent - grade NaCl,
NaHCO,, KCI, K,HPO, 3H,0, MgCl, 6H,0, CaCl,,
and Na,SO; in ion-exchanged distilled water” %,
The solution was buf-fered at pH 7.4 with tris
((CH,0H);

(hydroxymethyl) aminomethane
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Table 4.1 Ionic concentrations of SBF and 1.5SBF in compari-

son with those of human blood plasma

Concentration (mM)

Na* K* (o Mg?* HCO3 cr HPOE™ s0i~

Blood plasma 1420 50 25 L5 270 1030 10 05
SBF 1420 50 25 15 42 1480 10 05
1.58BF 2130 75 38 23 63 2230 15 075

CNH,) and 1M hydrochloric acid (HCI) at 36.5°C.
Citric acid (Wako Pure Chem. Ind. Ltd., Osaka,
Japan) was dissolved into the 1.5SBF solutions in
order that their concentrations were 0, 0.1, 0.3, 0.5,
0.7, 1, 2, 3, and 4 mM, and pH was readjusted with
tris (hydroxymethyl) aminomethane to 7.4.

A collagen membrane (Nitta Gelatin Inc., Osaka,
Japan), made from bovine skin, was used as a
substrate for HAp formation. The molecular
weight of collagen was 300000 and no cross-linkage
formed among molecules; therefore, the membrane
itself had no HAp forming ability in the SBF solu-
tion because of no hole zone. The collagen mem-
branes of 10x10x1 mm? in size were immersed in 30
ml of 1.5SBF solutions with the citric acid concen-
trations described above and soaked for a time
ranging from 3 h to 1 week at 36.5°C. After soaking,
the specimens were removed from the fluid, gently
rinsed with ion-exchanged distilled water for 5
times, and then dried at room temperature. Here-
after, the specimens treated in the 1.5SBF solutions
are referred to as C0, C0.1, C0.3, etc., corresponding
to the citric acid concentrations.

The surface microstructures and crystal phases
of the materials coated on the collagen membranes
were analyzed by scanning electron microscopy
(SEM) and thin-film X-ray diffractometry (XRD)
(Model RINT2000, Rigaku Co., Tokyo, Japan) with
an angle of 1° to the direction of the incident X-ray
beam. Fourier transformed infrared (FT-IR) trans-
mission spectroscopy (Model Spectrum 2000, Per-
kin Elmer Co., Norwalk, CT) was measured using
CaF, substrates. Calcium concentrations in the 1.
5SBF solutions were measured as a function of
soaking time with inductively coupled plasma
atomic emission spectroscopy (ICP-AES) (Model
UOPs - 2S, MARK?2, Kyotokoken Co,,
Japan).

Kyoto,

4. 4. 3 Results and discussion

Fig. 4.18 shows the microstructures of C0- and C1
-specimens obtained after soaking in the 1.5SBF
solutions at 36.5°C for 1 week. For the C0-specimen,
only collagen fibers were observed on the mem-
brane, while many spherulites were observed for
the Cl-specimen. As shown in Fig. 4.19, the spher-
ulites consisted of a large number of tiny flakes,
which were HAp crystals as described below. This
microstructure was quite similar to that deposited
on a bioactive glass or glass ceramics from SBF
solutions™~7"?; the same microstructure as that of
the Cl-specimen, corresponding to the HAp forma-
tion, was observed also for the C0.3-, C0.5-, C0.7-,
and C2-specimens. On the contrary, no HAp forma-
tion was found in the C0.1-, C3-, and C4-specimens

similar to the CO-specimen. Hereafter, the speci-

Fig. 4.18. Microstructures of the specimens soaked in 1.5SBF
solutions for 1 week at 36.5°C; the concentration of
citric acid added into the 1.5SBF solution was (a) 0
mM (C0) and (b) 1 mM (C1).
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mens C0, C0.1, C3 and C4 without HAp formation
are referred to as A-group, and the specimens C0.3,
C0.5, C0.7, C1 and C2 with HAp formation as B-
group.

Fig. 4.20 shows thin-film XRD profiles. Only a

Fig. 4.19. Detailed microstructure of the Cl-specimen soaked in

1.5SBF solution for 1 week at 36.5°C.

Intensity (a.u.)

S | ! 1 L | " 1 i

10 20 30 40 50 60
20 (degree)

Fig. 4.20. Thin-film XRD profiles of the specimens soaked in 1.
5SBF solutions for 1 week at 36.5°C.

broad peak was observed in the 2§ range of 12-30°
for the A-group, being assigned to the collagen
membrane. In addition to this broad peak, several
HAp peaks denoted by “H” in Fig. 4.20 were obser-
ved for the B-group. As the HAp peaks were com-
paratively broader than a normal HAp specimen, it
was considered that the HAp crystals grown had
low crystallinity or small crystallite size.

Fig. 4.21 shows the FT-IR spectra measured for
the specimens soaked in 1.5SBF for 1 week. For the
B-group, a strong peak p3 and a weak peak pl,
denote the stretching mode of a (PO,)?
observed around 1020 and 954 cm™!, respectively.

~ ion, were

Further, another peak y2 was observed around 876
cm™!, which could be ascribed tothe stretching
mode of a (CO,)?" ion. Therefore, the HAp crystals
formed on the collagen membrane were identified

as carbonate-containing hydroxyapatite. No HAp

VA

v, P-O

L

1300 1200 1100 1000 900 800
Wave number (cm™)

Transmittance (a.u.)

Fig. 4.21. FT-IR transmission spectra for the specimens soaked
in 1.5SBF solutions for 1 week at 36.5°C.
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peak was virtually found for the A-group.

Fig. 4.22 shows the Ca concentration in the 1.
5SBF solution as a function of soaking time. In the
A-group specimens, the Ca concentration de-
creased by 5-159% of the original concentration
after soaking for 1 week. The concentration
decreases for the CO0- and C0.1-specimens were
very slow and the changed amount was only about
59, while for the C3-specimen an abrupt decrease
of about 159 occurred in the first day and then the
decrease became almost constant. From this slight
decrease in Ca concentration, it was indicated that
the collagen membrane itself had no HAp forma-
tion ability and that the HAp formation was
depressed also by excess citric acid.

In the B-group, the decrease in Ca concentration
was in the range of 30-609§ with respect to the
original concentrations. All specimens of the B-
group showed an abrupt decrease during the first
day, followed by a continuous slow decrease
through the week. This appreciable decrease in Ca
concentration can be therefore attributed to the
formation of HAp crystals on the collagen mem-
brane surface. From these results, it was shown
that the HAp formation on a non-bioactive col-
lagen membrane from the 1.55BF solution was
critically dependent on the concentration of citric
acid. For explaining such HAp formation, the nu-

cleation model based on the chelation of a Ca ion

Reduced concentration

—#—C3.0

0.4

Time (day)

Fig. 4.22. Calcium concentration in 1.55BF as a function of soak-

ing time.

with citric acids is plausibly appropriate, because
the absorption of a Ca ion on collagen is an initial
step for calcium phosphate formation™-77,

Citric acid, C;HzO,, which has three carboxyl
groups and one hydroxyl group, is ionized to a C¢H,
0%, (cit) form™ in 1.5SBF as pK,=6.40 of citric
acid is smaller than pH=7.4 of the 1.5SBF solution;
therefore, The hydroxyl group of citric acid might
adhere to a collagen

CH,COOH CH,COO0"
| |
HO-C-O0H — HO-C-COO~+3H*
l l
CH,COOH CH,COO0"

membrane surface through the hydrogen bonding
with OH, C=0, NH, etc. of collagen. Negatively
charged citric acid can simultaneously chelate Ca
ions in the 1.5SBF solution to form a Ca-cit com-
plex. Then, a cluster of critical size can be formed
by adsorbing further phosphates and Ca ions, and/
or another citric acid on the Ca-cit complex; the
resultant three-dimensional cluster could act as
nucleus for a HAp crystal. After the nuclea tion,
HAp crystals can spontaneously grow since the 1.
bSBF solution is already supersaturated with
respect to the HAp®®.

Fig. 4.23 shows the molar ratio of Ca ion/citric
acid as a function of the concentration of citric acid
added to 1.5SBF solutions. Above the molar ratio

e

1¢

1

[

e

Molar ratio of Ca and citric acid (M__/M_,)

0.1 1 10
Citric acid (mM)

Fig. 4.23. Initial molar ratio of calcium/citric acid as a function

of citric acid.
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12, the HAp nucleation is quite slow because of low
nucleation sites corresponding to the C0- and C0.1
-specimens. On the other hand, below the molar
ratio 2, two citric acid molecules can form one
stable complex with a Ca ion in the form of [Ca
(cit) ,]*~ ; therefore, a cluster larger than a critical
size can hardly form and so the HAp nucleation is
inhibited, corresponding to the C3- and C4-speci-
mens. When the molar ratio is between 2 and 12,
citric acid can partially chelate a Ca ion to form a
positively charged complex in the form of [xCa?*
(cit)®],. (1 <x<3, 1<y<3), which can adsorb
negatively charged PO, ions and another citric acid
on the Ca-cit complex as schematically shown in
Fig. 4.24.

4. 4. 4 Conclusions

It was shown that the amount of citric acid added
to the 1.5SBF solution critically affected the nuclea-
tion of HAp crystals on a non-bioactive collagen
membrane. When the collagen membrane was soa-
ked in the 1.5SBF solution with a citric acid concen-
tration below 0.1 mM or above 3 mM, no HAp
crystal was formed. When the collagen membrane
was soaked in the solution with an appropriate

amount of citric acid, i.e. 0.3-2 mM, however, car-

simulated body fluid
Mg# Ct
PO

Na* K*

Cazt

S0z

co2 OH:

TP X < B0

Sibig RS,
© 0 9 o o O
QO 0O O O O 0O
ON O q\‘ ON o ()N
T | T T | =
o—?—o O=0=0

o

~ Collagen Membrane

Fig. 4.24. Schematic illustration of the formation of HAp embryo
with the aid of citric acid in an 1.5SBF.

bonate-containing HAp crystals were formed on
the collagen membrane. This nucleation behavior
could be explained by the relative molar ratio of
citric acid and Ca ion. The HAp/collagen mem-
branes obtained are expected to be useful for a
GBR material.
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Fig. 4.25. Polymerization of PDA.
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Fig. 4.26. SEM images of the calcite aggregates aligned on the
polymerized PDA film.

Fig. 4.27. Bright field TEM image of the calcite aggregate and

corresponding electron diffraction pattern.



Y UEREER A VY A BT TR

Mg A A4 U RE 5 FEIFE 2 & £ VREE» S REE
AN LSRR EE S L, HI0S 7o vicEY
59 A XDHNYA b BEEHEPER SN S, Mg A 4 >
DA N A b OFEREEEICERDAEN, /2K 7R
PRI XA NY A DO{110E IS 5 2 & T,
ANV A4 b OFERRERE - VA4 ABFHIEHE N TS
EEZoND,

PDA BE& LB EREAHTHCHT D/ F 0 755
Wiz h, FREGLSTMEL 2L TRESGDEIZ
LS ORHREDR TR0 TnB EHZ 5N, 20
ZEs, BELBBEL VYA MEEROMERRI
B4 . 28DEARIC AT LI WK - TnrbEZONSD,

4. 5.4 ¥
KEWZCHNVRF Y VEERLET 2ES LB QXA i
AL DR - Te 2 VY A MR Sz, R -
ERAEHEEIER, BP0 4 LESTERED
BEICE T, EENTEL 2D EERROIEFEH 2%
T BT B N L2 U Z R B 2 LN TE
726

(a)

c-axes .

VA
|
\ ]

Polymerization direction

(b)

c-axes

NN N
g

Fig. 4.28. Schematic showing the geometric relation between the
calcite aggregates and polymerized LB film. (a) Top
view. (b) View along the PDA polymerization direc-

tion.
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Table 5.1. Physical properties of porous hydroxyapatite

Pore dinmoter  Pathdiameter Porosity 3-point bending strength  Compressive strength
(um) {um) (%) (MPa) {MFa)
Sample A (surface) 1650 50 7% 8 20
Sample A (center) 150 &0 L3 8
Sample B (surface) 300 100 7% 7 1
Sample B (center) 300 100 5 7
Commercial product A 200 - 7 - 2-3
¢ ial product B 300 - 60 - 15
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Fig. 5.1

Scanning electron micrographs of porous hydroxyapatite. a: whole pores with the same size were

connect each other, b: pore surface was densely sintered and c: pillers were also densely sintered.
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Fig. 5.2 Hematoxylin and eosin stained histological sections of cultured bone using porous hydroxyapatite

after implanted into rats’ subcutaneous tissue. B and C indicate newly formed bone, O, osteoblasts,

V, blood vessel and H, porous hydroxyapatite. Bone formation in the pores was observed at 2 weeks’

after operation and the bone matured with increasing in implantation time.

Hematoxylin and eosin stained histological section of
porous hydroxyapatite implanted into rabbit’s femur
for 6 weeks at 3 mm depth from the implant surface.
Bone matrices (%) and bone marrow (@) grew in the
pores of porous hydroxyapatite (A). Bone tissues also
grew over two pores through the path between the

pores (arrow).
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5. 2. Studies on Preparation of a Bone-like
Apatite Cement, Porous Composite Implant
Materials

5. 2.1 Preparation of a bone-like apatite
foam cement

The preparation of a porous bone-like calcium

deficient apatite implant material was investigated.

A novel cement system composed of an equimolar

mixture of Ca,(PO,),0, Ca(H,PO,),*H,O and

CaCO,; was used. At a liquid/ powder ration of 0.83

ml/g low density open framework foam cements

were formed due to the rapid evolution of CO,. The

initial product of the reactants was CaHPO,+*2H,0

which then reacted with Ca,(PO,).O, forming a

calcium deficient carbonated apatite, upon soaking

of the cement blocks in SBF. Foam-like cements
were composed of a plate-like apatite due to
epitaxial overgrowth and conversion of the bru-
shite plate precursor (Fig. 5.4). Cylinders of the
foam cement were reinforced with an outer layer of

a solid apatite cement to form a material suitable

for application as a bone-section implant.

The inorganic component of bone is known to
consist of a plate like calcium deficient carbonated

(HAp).

mimic this composition should be advantageous,

hydroxyapatite Implant cements that
the degree of porosity is also an important factor in
promoting bone ingrowth. The high porosity of the
foam cement structure suggests the structure
should be osteo-conductive and the bone-like HAp
composition, together with the presence of OCP,
should allow the material to show good biological

resorption properties. An outer coat of solid cement

Fig. 54 Scanning electron micrographs of an apatite foam

cement. The surface of the cement was covered with
plate-like apatite due to epitaxial overgrowth and

conversion of the brushite plate precursor.

is used to reinforce the low-density core, to form
bone section implant material that can be shaped as
required.
5. 2.2 Preparation of porous composite
implant materials by in-situ polymer-
ization of porous apatite containing ¢-
caprolactone or methyl methacrylate
Biodegradable and biostable composite foams
were formed from porous apatite cement infiltrated
with g¢-caprolactone (CL) or methylmethacrylate
(MMA) using a high over vacuum. For CL compos-
ites in-situ polymerization was induced using trace

water as an initiator and heating at 120°C for up to
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10 days or at 80°C for 60 days. MMA composites
were polymerized using AIBN initiator at 70°C for
8 hours. CL preparations gave composites with a
polycaprolactone (PCL) number average of molec-
ular weight (Mn) up to maximum of 7.1 X 10? g/mol
after 10 days and 16.8 X 10%g/mol after 60 days. The
PCL and PMMA contents were close to 50 wt% and
40 wt9% respectively, polymer was present as thin
coating on the apatite crystal plates and was evenly
distributed throughout the samples. Re-evacuation
of apatite saturated with monomer during prepara-
tion ensured that the upwards of 200 nm microchan-
nels within the apatite cement were largely free of
polymer, and the overall macroporous structure of
the apatite foams was partly retained (Fig. 5.5).
Maximum compressive strengths increased from
9MPa to 37 and 64 MPa for PCL and PMMA
composites respectively. The water drop contact
angle of the PCL composite was 64°, and therefore
suitable for cell attachment. PMMA composite
surfaces were more hydrophobic. Composites were
subjected to corona discharge to induce suitable
moderate hydrophilicity at the surface. The use of
a high over vacuum procedure was successful in
infiltrating monomer into porous apatite blocks
which could then be polymerized in-situ whilst
largely retaining the porous morphology. The
resulting products (Fig. 5.6) were of much higher

Fig. 5.5 Scanning electron micrograph of a porous apatite
-polymer composite. The upwards of 200 nm micro-
channels within the apatite cement were largely free of
polymer, and the overall macroporous structure of the

apatite foams was partly retained.

Fig. 5.6

Appearance of porous apatite-polymer composites.
The composites were of much higher compressive
strength and should be expected to have different

biodegradation properties than the starting material.

compressive strength and should be expected to
have different biodegradation properties than the
starting material. The hydrophobicity of the PCL
composite was suitable for cell attachment; in both
composites the surface wettability could be tempo-
rarily altered as required using a corona discharge
treatment. The products are suitable as bone and
tooth implant materials and as cell scaffolds for

tissue engineering.
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L, ZDT A AFFEM IR 5 HAp BESAET 4 A
7 ERBEORTICEAL, BET 20 BEOFH
HERESELZY, BEDOQOL ZE T oERER
27z, Zabetakis &1 Z DREE IR T 5 72 DI, TR
RO ESFEH 7 — 7 )VEEIC pulsed laser depo-
sition iZ & Y HAp 5 L, BEA2EHRI LI LI
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Fig. 5.7 Typical diffuse reflectance of FT-IR spectrum of the
HAp particles prepared in this study.
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TE oSNz HAp T3 L WAEREMM 2RI 2 L0581
RT& 3%,

FTRTCOY Y INVEBWTHS. TERBEDARY b
WBESNTTzd, Y FUVETOKRE A A+ VK
DEEBZZWEFEZ OND,

X5. 81218 Sz AR D HBIK e X AR/ 88—
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Fig. 5.8 Typical XRD profile of the HAp particles. Any other

calcium phosphate phase than HAp was not detected

from this profile.

(A)

Fig. 5.9

ol FAGTHEOREREDDLET, Gonly
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RTo TRTOBRIZBWT, EHELoFROBKRER
T5F5 /94 ROKFIERINIZ, £z, KFOY
A ABRICRED FFICHE> TRE L LA A S
Nic, £z, FEF <Y a VRTER I NIRRT
RFEs ZfESHE CTHE LTV RO L, =y
a YHTEB SN HAp R FRENIHIENC & DS
nNTws twSERBIE SN, B5.11Ic=)VYy 3
HI50°C TR S L7z HAp Bk FOH KR # 7§ A
B3 4L FOEFREITRTH 5, Z OETHR D 5,
Z OSSO RS HAp OfS & 7O ¢ flic—33 3%
bbb, Thbb, IOMERIIELETD ¢l
FHREEELTWS EWZ %, 2T, TXTORTF
WBWTHFEBRICEM c iAmRThs EFE 2 oMb,

HAp Ri-FOREH M, A AORaEFEEZZENE
X SREHTE T D002, 100G DJEHSY » & Scherrer
DORIZPE> THIB L7220, k72, BB FDT A7 b
e doon/ dioo BB S NTE digeB LV dope P SEH LT 5

Transmission electron micrographs of the HAp particles prepared in emulsion systems; prepared at

(A) 25°C, (B) 35°C, (C) 50°C, and (D) 70°C.
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Fig. 5.10 Transmission electron micrographs of the HAp particles prepared in non-emulsion systems; prepared
at (A) 25°C, (B) 35°C, (C) 50°C, and (D) 70°C.

c axis

25 nm

Fig. 5.11 Transmission electron micrograph and electron diffrac-

tion pattern (inlet) of a HAp particle prepared at 50°
C in an emulsion system. A crystal elongation along ¢
-axis was observed from the electron diffraction pat-

tern.

Table 5.2 Calculated crystallite sizes of HAp particles in emul-
sion and non-emulsion systems.
Reaction i Crystallite size / nm Aspect ratio
Reaction Temperature/ °C ——

system dioo dooz (dooz2/d100)
25 22 55 2.5

Exulston 35 34 90 2.6
50 50 113 23
70 43 126 2.9
25 28 84 3.0
35 41 131 3.2

Non-emulsion

50 62 182 2.9
70 63 186 3.0

RERS.2IRT, TNy a yRTERS N HAp
FLFD digoB & U dooz 13 FNFN22~43, 55~126nm D
HWHEThHoTo—HIETINY 3 VR TOR FI1328~63,
84~186nm DEFHTH o720 EBLHDRIIB VT H,
RIGHRE D _EFIHE NG TFEIK & < & B {EA L A
sz, 7, FIRETHRLISE, =<y ay
ROERFREIIFEZ N a VRO B D LHANE W
Wi RERNE O, TARZ MRz Ly a v
RIZBNWT2.3~2.9, FEL=y a Y RIZBWT2.9~3.2
Thotle Thbb, Ty aryRLThHFE2EKT
32X VERATO c WiAMANDOEESY T &0
bOErEZOHNS,
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rwzb,

5. 3. 4 {&&
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Fig. 6.1 Unit cells for MD calculation.
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Fig. 6.2

(A) Configurations of Ca (OH),-Si0, interface at 300K,
0.1MPa. (B) Schema of proton transfer at Ca(OH),

and Si0, interface.
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Fig. 6.3 Overlap population between atoms in Cas (OH) ,3-5i,0,

H, cluster model calculated as a Ca(OH),-Si0, inter-

face.
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Fig. 6.4

Calculations of electronic structures of Ca-0Si bonding at the Ca(OH), / SiO, interface.

I: Cluster models of Ca(OH),-SiO, interface under compressive stress at the beginning of structural change are happened;

approximately 0.5-3 psec from the start of calculation (depends on the starting structure).

II: Overlap population diagrams in cluster models shown in Figs. (I-A) - (I-D).

III: Partial density of states for calcium orbitals in occupied molecular orbitals of cluster models shown in Figs. (I-A) - (I

-D). Real lines represent Ca3d, Cads and Cadp, and dashed lines represent Ca3s and Ca3p.

IV: Partial density of states for calcium orbitals in unoccupied molecular orbitals of cluster models shown in Figs. (I-A) -

(I-D).
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sive stress.
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Fig. 6.6 Relationship between the SrTiO; surface morphology

and oxygen partial pressure.

Right: AFM image of SrTiO; (111) surface annealed under intermediate oxygen pressure at 1000 for

5h. Left: the Fractal shape called Siepinski’s gasket.
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Fig. 6.10 Current-voltage characteristics of SrTi0O; bicrystal.

PIHHERE D I-V R FERIE 2R L, FERERE o
EIXSFRETH o 72, KiZ Ar BEEGHTCT ==V L7
B, -V B IR (o= 1) £ 2 D A — L DRRNC
EIBREL 5T, EBRAKRPTY =— N LIz,
I-VREREY o= S BREOIRMPE 2R RERICE

277,

6. 3. 2. 3.2 C-Viit

PEELLU7eo8q 27 ) A VD C-V K26 11128,
WIEAEE D C-V B i, BEEINCfEVIA D XS E D
ETHIML, Z20HBIZAE B Lk, Ric Ar FHK
FIT7 == L7c8RiE, EIEMEY (K6.10818)
O BBAETRE CH o2 REHTT =— VLT
X, C-VEHOERRVEA LA TH - (BE
MoHEOZE L, FEBCBEACKERT 2 LS
3),

6. 3. 2. 4 FEHONBIISHE
-V R, C-VRMEL D, KK THRE Lz N1 2
VAZNVOREIX, K6.12RT L% ““Hy =
v b F—[EEE” RO “BFrHMET 2 RHEEN BT
ETEEZOND, ZhZHL, Ar FEHKH TR
UieX4 27V R NVOFREIE, BES N T v 7HEN

20 o ¥ o
® )
@ @
[ ] @
& @
S o '+.
3 J
0O
S
£10 @ As sintered (in air)
<t
O OPost annealed (in air)
0
-5 0 5
VOLTAGE/V

Fig. 6.11 Capacitance-voltage characteristics of SrTiO; bicrys-
tal (at IMHz).
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Fig. 6.14 TEM image of =5 tilt boundary of the SrTiO,®.
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SrTiO; (001) substrate, (b) BST-480 and (c) BST
-520.
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Fig. 6.21 AFM images of ZnO surfaces annealed in O, gas at 950
(C. (a): (0001) and (b): (0001) surfaces.
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Fig. 6.22 A RHEED pattern of ZnO (0001) surface after annea-
ling at 9000C with the irradiation of Oxygen radicals.
Incident electron beam was parallel to the [1100]

direction of ZnO single crystal.
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Fig. 6.23 The polar angle dependence of the Zn signal intensities
along [1120] direction for (0001) surface. The bottom
curve is observed data, and upper and middle curves

are simulation results for bulk terminated and relaxed

surfaces, respectively.
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Fig. 6.24 Bond overlap population between uppermost Zn layer
and second O layer at the ZnO (0001) surface as a

function of the vertical distance elongation (Ad).
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Fig. 6.25 XPS spectra of Nls for (a): Zn terminated (0001)
surface, (b): O terminated (000I) surface after an-

nealed at 800°C in vacuum.

Fig. 6.26 RHEED pattern of 3x1 structure for ZnO (0001) sur-

face after the irradiation of nitrogen radicals.
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Fig. 6.27 X-ray fluorescence spectra from single crystals of rare
-earth hexaborides RB; (R=La, Ce, Nd, Sm, Eu and
Gd) taken at 150 KV tube voltage and 12 mA tube

current.
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Table 6.1 Structure refinement data for LaB; single crystal.

Space group Pm-3m (cubic symmetry)

Lattice constant [Al 4.1560(3)

Temperature [K] 295

Number of reflections 543

La(0,0,00 B(x,0,0) (x=0.19955(7))
0.005225(6)

Atom coordinates
Uiso [A2] for La atom

Ui [A?] for B atom 0.00318(7)
Usz=a3 [A?] for B atom 0.00485(6)
Occupancy of B atoms  0.988(3)
R-factor [%] 0.8
wR-factor [%] 0.6
Goodness of fit S 1.26(4)
Extinction ymin 0.81 {yao)
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Fig. 6.28 Values of the three temperature parameters, U, of La

atoms, U;; and Uy.s; of B atoms against sing / A.
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Fig. 6.29 (a) Boron coordinate X, (b) lattice constant, (c) bond
length between rare earth metals R and Boron atom
and (d) intra and inter bond lengths between boron
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Fig. 6.30 Values for mean square displacement of atoms, Ui,
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ERTFSERT 5 083005, HLEA 4V DORT
A R¥*TH 5D LT, Eu,Sm k% hEh, R,
RZ*+TH B I LICEBEAL TW5 EEZHNE,R*DA
W2 1A & P RO KICHECEMRI/NE
BB ENTINDE, £z, WMBROEMIBAHTIEA A
OB X R R bR oz r o7z, D
ZEns, FTEA LY EWEN\EERORENIMNL T
HLHEFEZOHNDY,

6. 6. 3. 2 BYERESHERW

BN, 77—V ZERER X 2BTERESEIRNT S
B2 DWTERT 3 Fourier &I & D EfEL B T3
SR p &L oz, FEICITERERO#ER
FRRETH 505, EERII IR O & O 58 EE = JIE
T3 EEAHEETH S, HER X iz AvizER
XD, EEOWED X (MoKg ##, 1=0.71A & ¥)
TRAERNTERFEBRORRORNZMET 5 Z & 48
AJRRICR o Tzo % 2T, FEAMEEFETICE T MR
XigRBEoBESEE2H L 5 i, BROEROKE
BEHIe 7 —) LFIC & 5, BFERE p, EETEE
Ap DHEL, FERIZOWTBTIRIERS, LaB:#
FE LD 518 5 NI HTICIE sing/ ) <2.0F TR
RF%Hwiz,

B6.311C sinf/A =20 TDF —F BEHWIED
LaB,(110) BiOEFEESMER T ERMOBE T L
T L, step 132.0e/A* TH 2, BRORF 2 E DT
WIEAT L 7o BRI, BT EECADES RS Z b,
AFICERDORES T — 9 &0 7 — ) 2K EEAT

Fig. 6.31 Electron density distributions for LaBs; (110) layer
obtained by fourier method with the use of data sets up
to sinf / A = 2.0. Contours are drawn from 0.0 e/A® at

intervals of 2.0 e/A3.
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Fig. 6.32 Differential electron density distributions for LaBg
(002) obtained by difference fourier method with the
use of data sets up to sind / A = 1.0. Contours are

drawn from -0.5 e/A® at intervals of 0.05 e/AS.
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Fig. 6.33 Electron density distributions for LaB, (110) layer
obtained by MEM (a) with the use of data sets up to
sind / A = 1.3 and FLAPW method (b). respectively.
Contours are drawn from 0.0 e/A? at intervals of 0.05
e/A%.
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Fig. 6.34 Electron density distributions for LaBg (002) layer
passing through the center of B, octahedron obtained
by MEM. Contours are drawn from 0.0 e/A? at inter-
vals of 0.05 e/AS3.
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Fig. 6.35 One dimensional electron density distribution of Boron

-Boron covalent bonding.
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6. 7 Electron density studies

6. 7.1 Introduction

Accurate electron density study can provide
important insights into electronic state and thereby
into the origin of technologically important prop-
erties of materials. ZnO and YTiO; are two such
materials. However, a number of corrections must
be made to raw X-ray data before electron density
analysis. In particular, single crystals of inorganic
compounds are often highly perfect and consequent-
ly are sometimes severely affected by extinction
(multiple reflection of diffracted X-rays). As
extinction models are only reliable for small levels
of extinction, it was also necessary in the course of
the work to develop a method of extinction correc-
tion which would allow reliable determination of
structure factors for more severe levels of extinc-

tion.

6. 7.2 YTiO;

YTiO; is a semiconductor at room temperature,
becoming ferromagnetic below 29K. Magnetic mea-
surements indicate that the Ti atom is a d! sys-
tem®®. The ferromagnetic interaction is thought to
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be mediated by superexchange along the Ti-O-Ti
bond in the structure. The electron density above
the transition temperature was studied with the
expectation that signs of the Ti-O-Ti interaction

would be visible.

6. 7. 2. 1 Experimental information

Y TiO; crystals were grown by the floating zone
method in a reducing atmosphere. Measurements
on the 20x5mm crystal obtained indicated that it
was an insulating ferromagnet, with magnetic and
thermal properties close to those previously report-
ed. A small sample of this larger crystal was
ground into a 0.8mm diameter sphere using a ball-
milling technique®” and a complete sphere of X-ray
diffraction data collected using WK g radiation (0.
21A) at both room at low temperature. Corrections
for absorption were applied and a spherical, har-
monically vibrating free atom model used to refine
structural parameters together with extinction.
Finally, the model structure factors were subtract-
ed from the observed structure factors and Fourier

transformed to give the difference electron density.

6. 7. 2.2 YTiO,; results

The electron density around the Ti atom is of
considerable interest. In an octahedral field, the Ti
d-orbitals should split into e; orbitals directed
along the bonding directions (higher energy) and
Le orbitals directed between the bonds. This is
indeed consistent with the observed difference den-
sity, where the highest depletion relative to the
neutral atom is directed along the bonds.

However, the pattern of difference density fur-
ther from the atom centre is not consistent with the
local bonding geometry. The extra depletion along
the Ti-02 bond bisectors does not have the expect-
ed octahedral symmetry, and neither does it appear
to be related to the symmetry of the second coordi-
nation sphere. The consistency of the near-nuclear
electron density with expectations indicates that
this is unlikely to be an artefact. (Fig.6.36)

Integration of the electron density around the Ti
atom suggests that Ti has lost a single d electron,

in agreement with magnetic measurements. Analy-

Fig. 6.37 Difference density in Zn-O

sis of the Y electron density and thermal parame-
ters indicate a significant Y-Ol interaction.
Furthermore, the characters of the Ti-O2 and Ti-
Ol interactions are quite different, based on both
thermal parameters and Ti/O electron density.
These results lead us to speculate that the Ti-O1
-Ti bond is crucial for ferromagnetism, perhaps by
a strengthening the overlap of Ti &, orbitals with
01 sp? orbitals when it changes at low temperature.
This interaction may be sensitive to the Y~O1 inter-

action as well.

6. 7. 3 Improvement of extinction correction
Before any work could begin on ZnO, which is

well known as being strongly extinction-affected, a
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new method of extinction correction needed to be
developed. The availability of a white radiation
spectrum from the WKy source, and an energy-
dispersive detector to select wavelengths, meant
that an empirical multiple-wavelength approach

was most convenient.

"6.7.3.1 Background

Usually, extinction correction is carried out by
refining a model parameter during least-squares
refinement of the structural model. This is unsatis-
factory for several reasons: first, the standard
models assume fairly small extinction; second, cor-
relation with the scale parameter is often large; and
third, the model can quite effectively refine away
real differencé density associated with depletion of
atomic cores. For these reasons, we sought a
method which was model-independent, did not
involve refinement of a parameter during least-
squares structure refinement, and was not
restricted to small extinction parameters.

The method developed
datasets at several different wavelengths, and then

involved measuring

extrapolating to zero wavelength. The underlying
assumption was that, close enough to zero wave-
length, the effect of extinction could be modelled as
a linear function, so that simple linear extrapola-
tion of structure factor intensities would be suffi-

cient to determine the extinction-free intensity.

6. 7. 3.2 Resulis
The table compares extrapolated values with the
accurate values for Si derived by Saka and Kato®
While the

extrapolated values are not particularly precise,

from Pendellosung measurements.

they have the advantage of being model-indepen-
dent.(Table 6.2)

This technique was used to determine whether or
not previously published work on K,PdCl,%? had
properly assessed the extinction correction, and
was able to show that, in that case, refinement of an
extinction model during least squares would have

produced reasonable extinction corrections.

Table 6.2 Comparison of extrapolated and exact values for Si.

i Fe Exact F
60.131(3)
67.343(5)
56.234(3)
43.634(6)
49.106(4)
38.224(5)
42.885(6)
37.58%(7)

i 62(2)
022 69(1)
004 58(1)
113 44,7(6)
R24 50.2(5)
133 38.5(5)
44 45(1)
26 382(3)
115 33.1(4) 32.9413)
B3a 3L7(5) 32.833(3)
i35 28.8(1) 28.81(1)
a4 32.103) 33.18(1)
08 25.8(2) 26.227(8)
h46 28.75(9) 29.42(1)
B3s 25.5(2) 25.357(6)

6. 7.4 Study of ZnO

A 7ZnO crystal was cut from a larger block and
ground into a flat plate. The data collection and
refinement procedure was similar to that described
for YTiO;, with the addition of supplemelntary
data collections at shorter wavelengths to enable
model-independent extinction correction as de-

scribed above.

6. 7. 4.1 Results

Both room and low-temperature difference den-
sity maps show small areas of depletion close to the
Zn atom along the Zn-O vector, and there appear to
be large lobes of electron accumulation near the O
atom next to the Zn-O interatomic vector. The
maps are generally noisy, suggesting residual prob-
lems with the data collection. FLAPW calculations
using WIEN95 predicted simpler difference maps.
Those calculations suggested that observable dis-
tortions to the model spherical atoms would be
limited to expansion and contraction of the O and
Zn electron clouds, with some coupling of Zn d and
O, orbitals. Questions remain regarding which
result to believe: FLAPW calculations do not neces-
sarily model electron exchange interactions well,
and so the discrepancy may be due to theoretical

limitations rather than experimental problems.
B
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