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Theory of Light Scattering in Axion Electrodynamics
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Taking account of the axion term in the Maxwell Lagrangian, we present a rigorous theory of light scattering in
piecewise-constant axion fields. In particular, we focus on axionic substances with confined and/or curved geometries,
and the scattering matrices of an axionic slab, cylinder, and sphere are derived analytically. The axion term generates a
surface current with off-diagonal optical conductivity, giving rise to a new type of photospin-orbit interaction. As a result,
various novel light-scattering phenomena can take place. We demonstrate enhanced Faraday rotation, parity-violating
light scattering, and strong perturbation of dipole radiation.
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1. Introduction

Axion is a hypothetical particle used to explain the so-
called strong CP (charge conjugation and parity) problem in
elementary particle physics.1 It is also a candidate for dark
matter,2 one of the biggest issues in physics and cosmology.
Thus, many researchers have searched for axions with a great
deal of effort. In the search for the axion, one of the key char-
acteristics considered is its coupling with photons. This cou-
pling is described by the so-called θ term (axion term) in the
Lagrangian for a radiation field. Recently, this term has at-
tracted growing interest in a very different context.

The θ term emerges in the effective theory for the radiation
field in (strong) topological insulators.3 This effective theory
is described by the ordinary Maxwell Lagrangian plus the θ
term, and is referred to as the axion electrodynamics.4 The
θ term is topological in the sense that it does not depend on
the space-time metric. Actually, it is a total derivative, pro-
vided that the axion field is constant. Therefore, this term is
negligible, at least locally in bulk, but has a non-negligible ef-
fect on a boundary. Thus, radiation dynamics in a topological
insulator may have a non-negligible effect through the bound-
ary surface. So far, most studies have assumed flat boundaries
because planar crystal growth usually occurs. However, from
the viewpoint of light scattering, the geometry of substances
plays a crucial role. For instance, resonances and angular pat-
terns depend strongly on the shape of the scatterer.

In this paper, we focus on the effects of confined and/or
curved geometries in light scattering and discuss possible
nontrivial phenomena induced by the θ term. In particular, we
focus on three geometries: a slab of finite thickness, a circu-
lar cylinder, and a sphere. These are representative examples
of confined and/or curved geometries and the analytic solu-
tion of light scattering can be obtained at θ = 0. Moreover,
by combining these geometries, complex geometries, such as
a Bragg stack and a rough surface, can be studied. For in-
stance, a rough surface is modeled as spheres placed on a slab.
Therefore, to elucidate the role of the geometry in axion elec-
trodynamics, the above three geometries are good examples.
Interestingly enough, we show that even at nonzero θ, the an-
alytic solution of light scattering in the three geometries can
be obtained.

To be specific, the axion electrodynamics is defined by the

following Lagrangian:

L = 1
2

E · D − 1
2

H · B + e2

2πh
θE · B. (1)

Here, we assume a local and linear response of the polariza-
tion field, D(x, t) = ϵ0ϵ(x)E(x, t), and the magnetic perme-
ability is set to be 1, B(x, t) = µ0H(x, t). The third term in eq.
(1) is the θ term, and θ = θ(x, t) is called the axion field. The
Euler-Lagrange equation becomes

∇ · D +
cϵ0α

π
∇θ · B = 0, (2)

∇ × H − ∂D
∂t
− cϵ0α

π

(
∂θ

∂t
B + ∇θ × E

)
= 0, (3)

where α ≡ e2/(4πϵ0ℏc) is the fine structure constant.
An axionic substance is characterized by a constant ax-

ion field, θ(x, t) = θ0. Outside the substance, the axion field
changes abruptly to 0. The abrupt change in the axion field
generates a Hall current with off-diagonal conductivity σH =

θ0e2/(2πh). This Hall current on the boundary gives rise to
nontrivial light scattering through the axionic substance. In
particular, a new type of photospin-orbit interaction emerges
and is different from the ordinary photospin-orbit interaction
due to the quasi-transverse condition ∇ · (ϵ(x)E) = 0. Op-
tical activity is a direct consequence of the new photospin-
orbit interaction and has been discussed by several authors.5–8

Here, we present further consequences of the photospin-orbit
interaction, taking account of possible accumulation and the
confined geometry of axionic substances. In particular, we
demonstrate enhanced Faraday rotation, parity-violating light
scattering, and strong perturbation in dipole radiation.

This paper is organized as follows. In §2 we investigate
the scattering (S) matrix of axionic substances by assuming
rather simple geometries. Section 3 is devoted to present the
enhanced Faraday rotation in a Bragg stack of axionic slabs.
In §4 parity-violating light scattering in an axionic cylinder
is demonstrated. The strong perturbation of dipole radiation
in an axionic sphere is shown in §5. Finally, a summary and
discussion are given in §6.

2. Scattering Matrix of Axionic Substance

In what follows, we consider light scattering by axionic
substances with rather simple geometries. The key quantity
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in light scattering is the S-matrix, which relates the ampli-
tude of the incoming wave to that of the outgoing wave. Once
we have the S-matrix, we can solve various types of light-
scattering problems in isolated axionic substances. Moreover,
by employing the multiple-scattering formalism, we can deal
with composite systems of axionic substances. The interac-
tion among axionic substances may enhance nontrivial effects
that are favorable for experimental detection.

To derive the S-matrix, the boundary condition of the elec-
tromagnetic field is crucial. The boundary condition in axion
electrodynamics is given by

∆D⊥ = −
cϵ0αθ0

π
B⊥, (4)

∆B⊥ = 0, (5)

∆E∥ = 0, (6)

∆H∥ =
cϵ0αθ0

π
E∥, (7)

Here, subscripts ∥ and ⊥ respectively stand for parallel and
perpendicular components with respect to the boundary sur-
face, ∆F ≡ F(x⊥ = δ) − F(x⊥ = −δ) is the discontinuity at
boundary (δ is an infinitesimal positive number), and the ax-
ion field changes abruptly from 0 (x⊥ < 0) to θ0 (x⊥ > 0).
Away from the boundary surface, the radiation field satisfies
the Helmholtz equation because ϵ(x) is piecewise constant.
Thus, it is easy to write down the incoming and outgoing
fields of the transverse wave. With the boundary condition,
the connection between the incoming and outgoing waves is
given. This connection defines the S-matrix.

It is worth noting that the above boundary condition is
equivalent to that in the case of surface charge and current.
In this case, the boundary condition on the xy plane becomes

∆Dz = ρ
2d, (8)

∆Hx = j2d
y , (9)

∆Hy = − j2d
x , (10)

and the remainder of the boundary condition is the same.
Therefore, the abrupt change in the axion field induces the
surface charge and current, from which the Hall conductance
of σH = θ0e2/(2πh) is derived. Further discussion about the
boundary condition is given in §6.

2.1 Slab
First, let us consider the S-matrix of an axionic slab sand-

wiched by normal substances. The slab is assumed to have
infinite extent in the xy direction and to have finite thickness
d. The permittivity ϵa and constant axion field θ0 are attributed
to the slab. The upper (lower) medium has permittivity ϵu(ϵl).
The S-matrix relates the incoming wave to the outgoing waves
as (

aβu
bβl

)
=

∑
β′=P,S

 S ββ′

++ S ββ′

+−
S ββ′

−+ S ββ′

−−

  aβ
′

l
bβ
′

u

 , (11)

where aβu, b
β
u, a

β
l , b

β
l (β = P, S ) are the coefficients of the plane

waves with P and S polarizations:

Eσ(x) = (aP
σ p̂+σ + aS

σ ŝ)eiK+σ ·x + (bP
σ p̂−σ + bS

σ ŝ)eiK−σ ·x, (12)

K±σ = k∥ ± γσẑ, γσ =
√

q2
σ − k2

∥ , qσ =
ω

c
√
ϵσ, (13)

p̂±σ = ±
γσ
qσ

k̂∥ −
|k∥|
qσ

ẑ, ŝ = k̂⊥, (14)

k̂∥ =
1
|k∥|

(kx, ky), k̂⊥ =
1
|k∥|

(−ky, kx), (15)

for σ = u, l. Here, Eu(l) is the electric field in the upper (lower)
medium. Since the system has translational invariance in the
xy direction, the wave vector k∥ parallel to the slab surfaces is
conserved.

To construct the S-matrix of the slab, it is convenient to
introduce the S-matrix of a flat interface between axionic (z >
0) and normal (z < 0) substances. Suppose that the normal
substance has permittivity ϵb. The interface S-matrix becomes

[S ++] = 2γb[A]−1, [S +−] = [A]−1[B],

[S −+] = −([A]t)−1[B]t, [S −−] = 2γa([A]t)−1, (16)

[A] =
 qb

qa
γa +

qa
qb
γb −αθ0ω

πc
γb
qb

αθ0ω
πc

γa
qa

γa + γb

 , (17)

[B] =
 qb

qa
γa − qa

qb
γb

αθ0ω
πc

γb
qb

αθ0ω
πc

γa
qa

γa − γb

 . (18)

Here, qa, qb, γa, γb are defined as in eq. (13), and we employ
the matrix notation

[X] ≡
(

XPP XPS

XS P XS S

)
, X = S ±±, A, B. (19)

Of particular importance is the mixing between P and S
polarizations, which vanishes at θ0 = 0. This mixing induces
Faraday and Kerr rotations through the interface, in which the
rotation angle is of order α. At θ0 = 0, P and S polarizations
are decoupled. This decoupling is a consequence of the or-
dinary photospin-orbit interaction, which lifts the degeneracy
between P and S , and of the in-plane symmetry, which pro-
hibits the coupling between P and S . At finite θ0, P and S po-
larizations are then mixed through the boundary condition of
the electromagnetic (orbital) field. Therefore, this mixing rep-
resents a new class of photospin-orbit interaction other than
the ordinary interaction, that caused by the magneto-optical
effect, and that caused by chirality.9 This point is further clar-
ified in §6.

For the case of a slab with two parallel interfaces, we need
to know the S-matrix of the lower (z = −d/2) and upper
(z = d/2) interfaces. The S-matrix of the lower interface is
obtained from eq. (16) by replacing ϵb with ϵl. For the up-
per interface, the S-matrix is obtained by replacing (ϵa, ϵb, θ0)
with (ϵu, ϵa,−θ0). The slab S-matrix is obtained in a layer-by-
layer manner10 as

[S ++] = S̃ u
++(1 − S̃ l

+−S̃ u
−+)−1S̃ l

++,

[S +−] = S̃ u
+− + S̃ u

++(1 − S̃ l
+−S̃ u

−+)−1S̃ l
+−S̃ u

−−,

[S −+] = S̃ l
−+ + S̃ l

−−(1 − S̃ u
−+S̃ l

+−)−1S̃ u
−+S̃ l

++,

[S −−] = S̃ l
−−(1 − S̃ u

−+S̃ l
+−)−1S̃ u

−−, (20)(
S̃ u
++ S̃ u

+−
S̃ u
−+ S̃ u

−−

)
=

(
ei(γa−γu) d

2 S u
++ e−iγudS u

+−
eiγadS u

−+ ei(γa−γu) d
2 S u
−−

)
, (21)
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(
S̃ l
++ S̃ l

+−
S̃ l
−+ S̃ l

−−

)
=

(
ei(γa−γl) d

2 S l
++ eiγadS l

+−
e−iγldS l

−+ ei(γa−γl) d
2 S l
−−

)
, (22)

where the matrix notation is omitted on the right-hand side of
eq. (20).

2.2 Cylinder
Next, we consider an axionic cylinder of infinite length and

circular cross section. The cylinder has radius ra, permittivity
ϵa, and constant axion field θ0. The background medium has
permittivity ϵb. Owing to the translational invariance along the
cylindrical axis (z axis), a wave vector parallel to the axis is
conserved. Thus, inside and outside the cylinder, the electric
field can be expanded in terms of the M and N polarization
basis as11

Eσ(x) = EσJ(x) + EσH(x), (23)

EσZ(x) = − 1
λσ

ẑ × ∇ψMσZ(x)

+

(
ikz

λσqσ
∇∥ +

λσ
qσ

ẑ
)
ψNσZ(x), (24)

ψβσZ(x) =
∑
n∈Z

Zn(λσρ)einϕeikzzψ
βσZ
n , (25)

λσ =
√

q2
σ − k2

z , (26)

for Z = J,H,σ = a, b, and β = M,N. Here, Ea(b) is the electric
field inside (outside) the sphere, Jn is the nth order Bessel
function, Hn is the nth order Hankel function of the first kind,
and (ρ, ϕ, z) are the cylindrical coordinates. The terms M and
N polarizations refer to the two independent transverse modes
of the vector cylindrical wave. The M and N polarizations
correspond to the S and P polarizations, respectively, if we
define the incident plane as that formed by the cylindrical axis
and the incident k vector.

The S-matrix of the cylinder surface is defined by(
ψ
βaJ
n

ψ
βbH
n

)
=

∑
β′=M,N

 S ββ′

n++ S ββ′

n+−
S ββ′

n−+ S ββ′

n−−

  ψ
β′bJ
n

ψ
β′aH
n

 . (27)

By imposing the boundary condition on the cylindrical sur-
face, we can obtain the analytic expression for the S-matrix as

[S n++] = −2i
π

[An]−1, [S n+−] = −[An]−1[Bn],

[S n−+] = −[Cn]−1[Dn], [S n−−] = −2i
π

[Cn]−1, (28)

[An] = [d<n ] − iαθ0

π

 0 − ω
cqa
ξaJn(ξa)H′n(ξb)

ω
cqb
ξbJ′n(ξa)Hn(ξb) nkzω

cqaqb

(
ξb
ξa
− ξa

ξb

)
Jn(ξa)Hn(ξb)

 , (29)

[Bn] = [dH>
n ] − iαθ0

π

 0 − ω
cqa
ξaHn(ξa)H′n(ξb)

ω
cqb
ξbH′n(ξa)Hn(ξb) nkzω

cqaqb

(
ξb
ξa
− ξa

ξb

)
Hn(ξa)Hn(ξb)

 , (30)

[Cn] = [d<n ]t − iαθ0

π

 0 − ω
cqb
ξbJ′n(ξa)Hn(ξb)

ω
cqa
ξaJn(ξa)H′n(ξb) − nkzω

cqaqb

(
ξb
ξa
− ξa

ξb

)
Jn(ξa)Hn(ξb)

 , (31)

[Dn] = [dJ>
n ]t − iαθ0

π

 0 − ω
cqb
ξbJ′n(ξa)Jn(ξb)

ω
cqa
ξaJn(ξa)J′n(ξb) − nkzω

cqaqb

(
ξb
ξa
− ξa

ξb

)
Jn(ξa)Jn(ξb)

 , (32)

[d<n ] =

 ξbJ′n(ξa)Hn(ξb) − ξaJn(ξa)H′n(ξb) nkz
qa

(
ξb
ξa
− ξa

ξb

)
Jn(ξa)Hn(ξb)

nkz
qb

(
ξb
ξa
− ξa

ξb

)
Jn(ξa)Hn(ξb) qa

qb
ξbJ′n(ξa)Hn(ξb) − qb

qa
ξaJn(ξa)H′n(ξb)

 , (33)

[dZ>
n ] =

 ξbZ′n(ξa)Zn(ξb) − ξaZn(ξa)Z′n(ξb) nkz
qa

(
ξb
ξa
− ξa

ξb

)
Zn(ξa)Zn(ξb)

nkz
qb

(
ξb
ξa
− ξa

ξb

)
Zn(ξa)Zn(ξb) qa

qb
ξbZ′n(ξa)Zn(ξb) − qb

qa
ξaZn(ξa)Z′n(ξb)

 , (34)

where ξσ ≡ λσra (σ = a, b) and the matrix notation

[X] =
(

XMM XMN

XNM XNN

)
(35)

is employed for X = S n±±, An, Bn,Cn,Dn.
At θ0 = 0, M and N polarizations are decoupled if kz = 0.

This decoupling is again a consequence of the photospin-orbit
interaction and the inversion symmetry under z → −z. If
kz , 0, the two polarizations are mixed even at θ0 = 0. How-
ever, this mixing is different from that at finite θ0, because the

parity with respect to a plane including the cylindrical axis
is preserved at θ0 = 0. With the latter mixing, this parity is
broken. We will see this effect in §4.

2.3 Sphere
Another analytic solution can be obtained for an axionic

sphere. Suppose that the sphere has radius ra, permittivity ϵa,
and constant axion field θ0. The background medium has per-
mittivity ϵb. The electric field inside and outside the sphere is
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expressed in terms of the M and N polarization basis as12, 13

Eσ(x) = Eσ j(x) + Eσh(x), (36)

Eσz(x) = iLψMσz +
1

qσ
∇ × iLψNσz, (37)

ψβσz(x) =
∑

L

zl(qσr)YL(x̂)ψβσz
L , (38)

for z = j, h, σ = a, b, and β = M,N. Here, L ≡ −ix × ∇,
jl is the lth order spherical Bessel function, hl is the lth order

spherical Hankel function of the first kind, YL(x̂) is the spheri-
cal harmonics, and L = (l,m) is the three-dimensional angular
momentum with −l ≤ m ≤ l.

The S-matrix of the spherical surface is then defined by(
ψ
βa j
L

ψ
βbh
L

)
=

∑
β′=M,N

 S ββ′

l++ S ββ′

l+−
S ββ′

l−+ S ββ′

l−−

  ψ
β′b j
L

ψ
β′ah
L

 . (39)

Because of the rotational invariance of the system, the
S-matrix is diagonal with respect to L and does not depend
on m. By imposing the boundary condition, we obtain

[S l++] = − i
ρb

[Al]−1, [S l+−] = −[Al]−1[Bl],

[S l−+] = −[Cl]−1[Dl], [S l−−] = − i
ρa

[Cl]−1, (40)

[Al] =

 d<l − iαθ0
π

ω
c r0

(ρa jl(ρa))′

ρa
hl(ρb)

iαθ0
π

ω
c r0 jl(ρa) (ρbhl(ρb))′

ρb
w<

l

 , (41)

[Bl] =

 dh>
l − iαθ0

π
ω
c r0

(ρahl(ρa))′

ρa
hl(ρb)

iαθ0
π

ω
c r0hl(ρa) (ρbhl(ρb))′

ρb
wh>

l

 , (42)

[Cl] =

 d<l − iαθ0
π

ω
c r0 jl(ρa) (ρbhl(ρb))′

ρb
iαθ0
π

ω
c r0

(ρa jl(ρa))′

ρa
hl(ρb) w<

l

 , (43)

[Dl] =

 d j>
l − iαθ0

π
ω
c r0 jl(ρa) (ρb jl(ρb))′

ρb
iαθ0
π

ω
c r0

(ρa jl(ρa))′

ρa
jl(ρb) w j>

l ,

 , (44)

d<l = ρa j′l(ρa)hl(ρb) − ρb jl(ρa)h′l(ρb), (45)

dz>
l = ρaz′l(ρa)zl(ρb) − ρbzl(ρa)z′l(ρb), (46)

w<
l =

ρb

ρa
(ρa jl(ρa))′hl(ρb) − ρa

ρb
jl(ρa)(ρbhl(ρb))′, (47)

wz>
l =

ρb

ρa
(ρazl(ρa))′zl(ρb) − ρa

ρb
zl(ρa)(ρbzl(ρb))′, (48)

where ρσ ≡ qσra (σ = a, b).

3. Faraday Rotation in Stacked Axionic Slabs

A vivid example that illustrates the role of the θ term is
the Faraday and Kerr rotations of polarized light. This ef-
fect was studied by several authors, and the rotation angle of
the Faraday rotation is generally small. To enhance the polar-
ization rotation angle, we consider a Bragg stack of axionic
slabs. The optical properties of the Bragg stack can be de-
scribed by the S-matrix, which can be numerically obtained
in a layer-by-layer manner, from the S-matrix of an isolated
axionic slab. In a Bragg stack composed of ordinary media,
the P and S polarizations are decoupled, and the resulting
photonic bands are either P- or S -polarized. Thus, no polar-
ization rotation takes place as long as the incident wave is
either P- or S -polarized. However, if θ0 is finite, the P and S
polarizations are mixed, forming mixed photonic bands with
(incident) angle-dependent stop bands.

As an example, let us consider an incident wave of S -
polarization with Brewster angle θB ≡ tan−1(

√
ϵa/ϵb). A

schematic illustration of the system under study is shown in
Fig. 1. Strictly speaking, in our case antireflection takes place
for nonpurely P polarized light at an incident angle slightly
shifted from θB. However, the system still almost shows an-
tireflection. Figure 2 shows the photonic band structure, trans-
mittance, Faraday rotation and ellipticity spectra in an axionic
Bragg stack. The Bragg stack is composed of eight axionic
slabs placed periodically in air. The photonic band diagram
consists of two kinds of dispersion curves, straight and curved
ones. The former correspond to P-like bands with gapless
dispersion owing to the anti-reflection. The latter are S -like
bands with gapped dispersion. The S -polarized incident light
mostly excites the S -like band modes. Therefore, the trans-
mission spectrum exhibits Fabri-Perot resonances in the S -
like band regions and dips in the gap region of the S -like
bands. We stress that the transmittance still shows finite val-
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S-pol

Fig. 1. Schematic illustration of the Bragg stack under study. Axionic slabs
of permittivity ϵa and constant axion field θ0 are aligned periodically with
lattice constant a in a background medium of permittivity ϵb. The S -polarized
light is incident on the Bragg stack with Brewster angle θB.
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Fig. 2. (Color online) Photonic band structure, transmittance (T), Faraday
rotation (θF ), and ellipticity of the transmitted light in the axionic Bragg
stack. Eight axionic slabs of ϵa = 100 and θ0 = π (taken from ref.5 for
Bi2Se3) are aligned periodically in air (ϵb = 1). The slab thickness is taken to
be 0.5a.

ues of order 10−8 in the gap. These small values are due to the
mixing between P and S polarizations, and the P-like com-
ponent of the incident S -polarized light can transmit through
the Bragg stack. This transmission gives rise to an enhanced
Faraday rotation. We should note that at θ0 = 0, the dip be-
comes deeper with increasing number of slabs, whereas the
transmittance in the dip does not change significantly at finite
θ0.

As expected, the Faraday rotation angle is nearly ±π/2 (P-
polarized) in the S -gap region and nearly an integer multiple
of π (S -polarized) otherwise. The transmitted light is, in gen-
eral, elliptically polarized because of the mixing between P
and S polarizations and because of their phase difference. The
ellipticity is enhanced near the stop-band edges.

4. Parity-Violating Light Scattering by Axionic Cylinder
Next, let us consider a plane wave of wave vector k and

polarization p incident on an axionic cylinder. In this case,
the multipole component of the incident wave is expressed as
eq. (25) with

ψMbJ
n = ine−inϕ(k)

(
−1

2
p−eiϕ(k) +

1
2

p+e−iϕ(k)
)
,

ψNbJ
n = ine−inϕ(k)

(
− kz

2qb
(p−eiϕ(k) + p+e−iϕ(k)) +

λb

qb
pz

)
,

ψMaH
n = ψNaH

n = 0, (49)

where p± ≡ px ± ipy. The P(S ) polarization gives ψMbJ =

0 (ψNbJ = 0) (here, the incident plane is defined by the plane
formed by the incident wave vector and the cylindrical axis).
The scattering cross section of the cylinder per unit length is
written as

σtot =

∫ 2π

0
dϕσdcs(ϕ), (50)

σdcs(ϕ) =
∑
β=M,N

| f β(ϕ)|2, (51)

f β(ϕ) =

√
2
πλb

∑
n

(−i)n+1einϕψ
βbH
n . (52)

Let us set ϕ(k) = 0. Then, the incident wave is expressed as
Einc = pexp(ikxx + ikzz), and it is obvious that the incident
wave of P and S polarizations is either symmetric or antisym-
metric under y → −y (ϕ → −ϕ). As a result, the differential
cross section σdcs(ϕ) becomes symmetric under ϕ → −ϕ in
the ordinary case. The presence of the θ term violates this
symmetry, and the resulting cross section exhibits an asym-
metric distribution. We express the degree of the asymmetry
as

AS (ϕ) ≡
∣∣∣∣∣σdcs(ϕ) − σdcs(−ϕ)

σdcs(ϕ)

∣∣∣∣∣ . (53)

Figure 3 shows the total cross section σtot for P- and S -
polarized light as a function of frequency, the differential
cross section σdcs(ϕ) for P-polarized light at a resonant fre-
quency, and the degree of asymmetry AS (ϕ) at the same fre-
quency. An oblique incidence of 30◦ is assumed. The total
cross section exhibits a series of Mie resonances whose po-
larization properties are not purely P- and S -polarized. This
mixing takes place even if θ0 = 0. Let us focus on the reso-
nance at ωa/2πc = 0.1213 for the P-polarized incident light.
This resonance has angular momentum n = 2 and is close
in frequency to the resonance at ωa/2πc = 0.121 for the
S -polarized incident light. This resonance has angular mo-
mentum n = 1. The angular distribution of the former reso-
nance approximately exhibits a 2n-fold rotational symmetric
pattern, because the angular momenta of both n and −n con-
tribute to f β(ϕ). We should point out that the angular distribu-
tion has a slight deviation from the symmetric configuration
with respect to ϕ = 0, although it seems to be symmetric. In
fact, the degree of asymmetry becomes nonzero and shows a
complex profile owing to the overlap between the two reso-
nances with different angular momenta. This asymmetry re-
sults from the strong perturbation of the θ term, which is af-
fected by the resonance nearby. As in the degenerate pertur-
bation, the perturbation of the lowest order in α can survive
in the differential cross section, giving rise to enhanced asym-
metry. In this way, the light scattering by an axionic cylinder
is parity-violating.

An important ingredient of the parity violation is the
oblique incidence. In the normal incident case, the parity in-
variance is recovered. This property originates from the sym-
metry of the S-matrix under the inversion of the angular mo-

5



J. Phys. Soc. Jpn. FULL PAPERS

0 0.1 0.2 0.3
ωa/2πc

0

10

20

30

σ to
t/a 0.120 0.121 0.122

0

5

10

15

P-pol.

S-pol.

30
o

P

S

a

φ=01 2 3

σ
dcs

/a

AS(x10
4
)

Fig. 3. (Color online) Scattering cross sections of the axionic cylinder with
ϵa = 100, θ0 = π, and diameter a in air. The plane wave is incident on the
cylinder with an incident angle of 30◦. (Upper panel) Total cross section as
a function of frequency. Both P- and S -polarized incident light are consid-
ered. (Lower panel) Differential cross section and degree of asymmetry at
resonance frequency of ωa/2πc = 0.1213 for P-polarized incident light. The
incident azimuthal angle is 0◦.

mentum n. At θ0 = 0, this symmetry becomes

[X−n] =
(

XMM
n −XMN

n
−XNM

n XNN
n

)
, X = S ±±, A, B,C,D. (54)

We should note that the off-diagonal terms XMN
n and XMN

n
vanish if kz = 0, resulting in the decoupling of P and S po-
larizations. Therefore, for the P-polarized incident light, for
instance, we can show that f M(−ϕ) = − f M(ϕ) and f N(−ϕ) =
f N(ϕ), resulting in σdcs(−ϕ) = σdcs(ϕ). At finite θ0, this sym-
metry is broken. However, if kz = 0, the symmetry is re-
covered as [X−n] = [Xn] irrespective of θ0. In this case, we
can prove that f β(−ϕ) = f β(ϕ) (β = M,N). Again we have
σdcs(−ϕ) = σdcs(ϕ). Thus, the degree of asymmetry is zero
for the normal incidence.

Let me comment on experimental aspects of parity-
violating light scattering. To observe parity-violating signals,
it is important that the specimen has parity symmetry in its
shape. This condition does not exclude a cylinder with a rect-
angular cross section, which is more easily fabricated than a
cylinder with a circular cross section. Light scattering by a
rectangular cylinder can be described by an S-matrix that is
not diagonal with respect to angular momentum index n.

5. Strong Perturbation of Dipole Radiation in Axionic
Sphere

As a final example, let us consider an oscillating dipole
placed inside an axionic sphere. The multipole component
of the incident wave induced by the oscillating dipole is ex-
pressed as eq. (38) with the following multipole components:

ψ
βb j
L = 0,

ψ
βah
L =

iµ0ω
2qa

l(l + 1)

∑
L′

d · [(Pβ)†]LL′ jl′(qar0)Y∗L′(x̂0), (55)

where d is the electric dipole moment, x0 is the dipole posi-
tion inside the sphere, and matrix Pβ is the vector-spherical-
wave expansion coefficient. For its expression, please consult
the appendix. We should note that [PM]LL′ is diagonal with
respect to index l. Therefore, ψMah

L = 0 for a particular angu-
lar momentum l irrespective of m, provided that qar0 = jl+ 1

2 ,n
,

i.e., the nth zero of the spherical Bessel function of order l.
Moreover, at θ0 = 0, the Mie resonance is classified ac-

cording to β, l, and the principal number n. At the resonant
frequencies, we have d<l ≃ 0 (w<

l ≃ 0) for β = M(N). This
property along with the vanishing multipole component im-
plies that the Mie resonance of β = M(N) with angular mo-
mentum l becomes hidden if qar0 = jl+ 1

2 ,n
is satisfied at the

resonant frequency.
On the other hand, at finite θ0, the Mie resonance is not

simply classified according to polarization β. Instead, at reso-
nance frequencies we have

d<l w<
l ≃

(
αθ0

π

ω

c
r0

)2 jl(ρa)(ρa jl(ρa))′hl(ρb)(ρbhl(ρb))′

ρaρb
. (56)

The right-hand side in eq. (56) is of order α2, so that the fre-
quency shift of a given resonance from θ0 = 0 is also of order
α2.

The dipole radiation is characterized by the extinction rate,
which is the total energy emitted from the dipole per unit time
interval. This quantity is evaluated as

ER(ω) = ER0(ω)ℜ[
√
ϵa] +

ω

2
ℑ[d∗ · Ea j(x0)], (57)

ER0(ω) =
µ0ω

4|d|2
12πc

. (58)

Here, ER0(ω) is the extinction rate of the dipole in vacuum.
Again, we have the factor jl(qar0) in eq. (57) [see eqs. (37)
and (38)]. Therefore, at qar0 = jl+ 1

2 ,n
, the possible enhance-

ment of ψMa j is hidden. However, through the cross term of
the polarization in the S-matrix, the resonance becomes visi-
ble through the β = N channel.

Figure 4 shows the normalized extinction rate of a dipole
placed inside an axionic sphere. The dipole position is chosen
such that qar0 = j5+ 1

2 ,1
is satisfied around the relevant reso-

nance frequency. We can see that at θ0 = π, the resonance be-
comes visible, whereas the resonance is completely hidden at
θ0 = 0. The extinction spectrum changes by more than 45% at
the resonance frequency, otherwise it changes very little and is
of order α2. Therefore, the θ term can very strongly modulate
the dipole radiation at resonance frequencies. We should note
that a similar phenomenon can take place for magnetic dipole
radiation by interchanging the roles of M and N polarizations.

From an experimental viewpoint, a dipole placed inside a

6
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Fig. 4. (Color online) Extinction rate of an oscillating dipole inside a
sphere of permittivity ϵa = 100 and diameter a. Both normal (θ0 = 0) and
axionic (θ0 = π) spheres are considered. A dipole whose moment is parallel
to the sphere surface is placed at r = rd , depending on its oscillation fre-
quency in such a way that qard = j5+ 1

2 ,1
≃ 9.356 around the frequency of the

third Mie resonance of M polarization with angular momentum l = 5.

sphere can be realized by embedding a light emitter, such as a
quantum dot or dye molecule, having an electric-dipole tran-
sition. The extinction rate of the dipole is proportional to the
decay rate or the inverse lifetime of the emitter via Fermi’s
golden rule. Therefore, the strong perturbation of the extinc-
tion rate can be observed experimentally via a lifetime mea-
surement. To observe the clear contrast as shown in Fig. 4, the
rotational symmetry of the specimen is crucial. If it is broken,
M and N polarizations are no longer decoupled at θ0 = 0,
giving rise to a possible peak of the extinction rate even at
θ0 = 0. This will make the contrast of ER between θ = 0
and π smaller. A numerical demonstration of such an effect is
beyond the scope of the present paper.

6. Summary and Discussion
We have presented a theory of light scattering in axion

electrodynamics. The S-matrix is derived analytically for pla-
nar, cylindrical, and spherical objects. Using the S-matrix,
enhanced Faraday rotation, parity-violating light scattering,
and strong perturbation in dipole radiation are demonstrated.
These optical phenomena can be used to study a topological
insulator optically.

Several points remain to be noted. An important issue is
the relevance to chirality. Faraday rotation without a magnetic
field, discussed in this paper, is reminiscent of the so-called
Drude-Born-Fedorov (DBF) chirality:

D = ϵ0ϵ(E + β∇ × E), (59)

B = µ0µ(H + β∇ × H). (60)

Assuming a steady state of frequency ω, eqs. (59) and (60)
become

D = ϵ0ϵE + iχcB, (61)

H =
1 − ω2

c2 ϵµβ
2

µ0µ
B + iχcE, (62)

with χc = ϵ0ϵβω. Therefore, magnetoelectric coupling takes
place at nonzero frequencies. The dispersion relation in a ho-

mogeneous DBF medium is given by

k =
ω
c
√
ϵµ

1 ± ω
c
√
ϵµβ

, (63)

and the corresponding two eigenstates are left and right
circular-polarized light. The time-reversal symmetry is pre-
served if ϵ, µ, and β are real, whereas the space-inversion sym-
metry is broken.

On the other hand, the constitutive relation in axion elec-
trodynamics becomes

D = ϵ0ϵE + χaB, (64)

H =
1
µ0µ

B − χaE, (65)

with χa = cϵ0αθ/π. Therefore, the magnetoelectric coupling
emerges even at the static limit (ω = 0), but the effect is
topological. This is because the dispersion relation is the
same as that in an ordinary medium, k = (ω/c)

√
ϵµ, and

the effect arises only through the boundary as presented in
the paper. At a generic value of θ, both the time-reversal
and space-inversion symmetries are broken. Therefore, axion
electrodynamics is completely different from the DBF chiral-
ity, although they both possess optical activity. For compari-
son, in multiferroic materials, magnetoelectric coupling also
emerges. The coupling generally has an off-diagonal form and
is given by the effective Lagrangian of ∆L ∝ αi jEiB j. The
dispersion relation is also altered from the ordinary relation.
We also note that in the field of electromagnetic engineering
the axionic medium is called the Tellegen medium and has
been studied theoretically as a part of bi-isotropic media.14, 15

Recent investigation of metamaterial also sheds light on the
Tellegen medium.16

Another important issue is the validity of the Lagrangian
of eq. (1). In this paper we simply assume that eq. (1) can be
applied in entire space-time for both axionic (θ , 0) and non-
axionic (θ = 0) substances. The difference of axion electro-
dynamics from ordinary electrodynamics lies in the boundary
condition of the surface Hall current presented in §2. One may
wonder whether such a boundary condition correctly takes ac-
count of the surface states of a topological insulator, which is
a representative axionic substance.

Concerning this issue, we implicitly assume that a small
gap ∆Es in the surface states opens by some means (e.g., by
attaching a thin magnetic layer to the surface) and that the
operating frequencies of the radiation field under study are
below the gap energy, ω < ∆Es/ℏ. Under this condition, the
effective theory of the radiation field is well-defined in the
following sense. The Lagrangian of eq. (1) is to be derived
by integrating out the matter fields in the bulk topological in-
sulator. If there is a gapless surface state, the integration will
have the infrared divergence, which may affect some physical
properties. However, if there is a gap, the integration will be
well-defined.

We also note that the 3+1-dimensional (d) Lagrangian of
eq. (1) is gauge-invariant, regardless of the geometry of the
3d topological insulator. This gauge invariance provides a
striking contrast to the broken gauge invariance of the 2+1d
Chern-Simons Lagrangian for a 2d quantum Hall system,

LCS =
σH

2
ϵµνρAµ∂νAρ, (66)
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provided the 2d system has open boundaries. Here, σH is the
2d Hall conductivity, ϵµνρ is the totally antisymmetric tensor
with ϵ012 = 1, and Aµ is the gauge field. The Chern-Simons
Lagrangian is also derived by integrating out matter fields of
the 2d quantum Hall system. In this case, to compensate the
broken gauge invariance, an additional term in the effective
Lagrangian is needed, giving rise to an additional current lo-
calized near the edge.17, 18 Therefore, from the viewpoint of
gauge invariance, we may regard eq. (1) as the effective La-
grangian irrespective of the geometry of the topological in-
sulator, although the addition of a surface-localized gauge-
invariant effective Lagrangian is still allowed.

In a topological insulator, the spin-orbit interaction plays
a crucial role. It is interesting to note that the (electronic)
spin-orbit interaction results in the θ term in the effective La-
grangian of the radiation field, and that the θ term induces a
new class of the photospin-orbit interaction. Whether or not
this interaction gives rise to a photonic counterpart of a topo-
logical insulator is an important issue. In this context a recent
investigation of a photonic topological insulator19 may be in-
structive.

In this paper we have concentrated on static and piecewise-
constant axion fields. If a time-dependent θ is available, there
will be a frequency shift for an incident monochromatic wave.
For instance, if the axion field jumps to 0 in a certain switch-
ing time, the frequency shift will be on the order of the in-
verse switching time. Moreover, the effect of a spatially vary-
ing axion field is an important issue. This problem is closely
related to the search for axions in particle physics.20 A pop-
ular method of searching for axions is to use the Primakoff
effect,21, 22 which results in the conversion of a photon to an
axion under a strong external field. This effect combined with
multiple scattering in an ensemble of nonaxionic scattering
objects may enhance the interaction between an axion and
photon, resulting in an improvement of axion detection effi-
ciency.

We hope this paper will stimulate further investigation of
axion electrodynamics from various points of view.
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Appendix
In the appendix we summarize the vector spherical expan-

sion coefficients. The coefficients Pβ are defined by

iLψ(x) =
∑
LL′

zl(qr)YL(x̂)[PM]LL′ψL′ , (A·1)

1
q
∇ × iLψ(x) =

∑
LL′

zl(qr)YL(x̂)[PN]LL′ψL′ , (A·2)

ψ(x) =
∑

L

zl(qr)YL(x̂)ψL, (A·3)

where zl is either the spherical Bessel or spherical Hankel
function of order l. If we define the spherical harmonics as

YL(x̂) = (−1)
m+|m|

2

√
2l + 1

4π
(l − |m|)!
(l + |m|)! eimϕP|m|l (cos θ), (A·4)

then we obtain

[PM
x ]LL′ = iAL

0+δL′,L0+ + iAL
0−δL′,L0− , (A·5)

[PM
y ]LL′ = −AL

0+δL′,L0+ + AL
0−δL′,L0− , (A·6)

[PM
z ]LL′ = imδL′,L, (A·7)

[PN
x ]LL′ = (l + 2)BL

++δL′,L++ − (l + 2)BL
+−δL′,L+−

− (l − 1)BL
−+δL′,L−+ + (l − 1)BL

−−δL′,L−− (A·8)

[PN
y ]LL′ = i(l + 2)BL

++δL′,L++ + i(l + 2)BL
+−δL′,L+−

− i(l − 1)BL
−+δL′,L−+ − i(l − 1)BL

−−δL′,L−− (A·9)

[PN
z ]LL′ = −(l + 2)CL

+0δL′,L+0 − (l − 1)CL
−0δL′,L−0 , (A·10)

AL
0± =

1
2

√
(l ∓ m)(l ± m + 1), (A·11)

BL
+± =

1
2

√
(l ± m + 1)(l ± m + 2)

(2l + 1)(2l + 3)
, (A·12)

BL
−± =

1
2

√
(l ∓ m − 1)(l ∓ m)

(2l − 1)(2l + 1)
, (A·13)

CL
+0 =

√
(l + m + 1)(l − m + 1)

(2l + 1)(2l + 3)
, (A·14)

CL
−0 =

√
(l + m)(l − m)

(2l − 1)(2l + 1)
, (A·15)

L0± = (l,m ± 1), L±0 = (l ± 1,m),

L±+ = (l ± 1,m + 1), L±− = (l ± 1,m − 1). (A·16)

The M and N polarizations are orthogonal in the sense that

[(Pβ)† · Pβ′ ]LL′ = l(l + 1)δL,L′δβ,β′ . (A·17)
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